首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   875篇
  免费   45篇
  国内免费   137篇
  1057篇
  2024年   1篇
  2023年   17篇
  2022年   26篇
  2021年   19篇
  2020年   24篇
  2019年   39篇
  2018年   36篇
  2017年   25篇
  2016年   42篇
  2015年   28篇
  2014年   35篇
  2013年   54篇
  2012年   32篇
  2011年   110篇
  2010年   24篇
  2009年   66篇
  2008年   49篇
  2007年   51篇
  2006年   56篇
  2005年   54篇
  2004年   33篇
  2003年   36篇
  2002年   35篇
  2001年   33篇
  2000年   17篇
  1999年   15篇
  1998年   15篇
  1997年   13篇
  1996年   13篇
  1995年   12篇
  1994年   7篇
  1993年   12篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   6篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
排序方式: 共有1057条查询结果,搜索用时 15 毫秒
161.
Rhodotorula glutinis, an oil producing strain, can utilize monosodium glutamate (MSG) wastewater as a raw material for lipid production. The effects of ammonium-N in the MSG wastewater (ammonium 15,000–25,000?mg/L, COD 30,000–50,000?mg/L) on cell growth, lipid accumulation and malic enzyme activity of R. glutinis have been studied. Four initial ammonium sulfate concentrations in the medium were set, which were 20, 60, 100, and 140?g/L. With an increase in the ammonium sulfate concentration, the uptake of ammonia nitrogen and lipid accumulation increased while the biomass decreased at 72?h. The maximum value of ammonia nitrogen consumption reached 5.77?g/L for an initial ammonium sulfate concentration of 140?g/L at 72?h. In addition, 60?g/L ammonium sulfate concentration may be an appropriate concentration for R. glutinis cultivation. The activity of the malic enzyme was measured and the results showed that there was a linear relationship between the intracellular lipid content and the total malic enzyme activity.  相似文献   
162.
In the context of the proposed work, two different amino acids (Glycine, Phenylalanine) have interacted with copper ions in a phosphate buffer (PBS) in place of enzymes. This interaction resulted in the nucleation of copper phosphate crystals and the formation of flower-shaped amino acid-copper hybrid nanostructures (AA-hNFs), which grew through self-assembly. While Cu (II) ions in the structure of AA-hNFs were used as Fenton's agent for the catalytic activity. SEM, energy dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy measurements were used to define the AA-hNFs′ characterisation. The peroxidase-like activities of AA-hNFs were investigated by UV/VIS spectrophotometer. Metal nanoparticles have peroxidase-like activity. A class of enzymes known as peroxidases is able to catalyze the conversion of hydrogen peroxide into hydroxyl radicals. These radicals also take part in electron transfers with substrates, which results in color during oxidation. When cupric oxide nanoparticles are added to the peroxidase substrate while H2O2 is present, a blue color product with a maximum absorbance at=652 nm can result, demonstrating the catalytic activity of a peroxidase. The morphology and composition of AA-hNFs were carefully characterized and the synthesized parameters were optimized systematically. Results showed that the nanoparticles were dispersed with an average diameter of 7–9 μm and indicated a uniform flower shape. The results of the investigation are anticipated to significantly advance a number of technical and scientific sectors.  相似文献   
163.
Induced production of chitinase during bioconversion of starch industry wastewater (SIW) to Bacillus thuringiensis var. kurstaki HD-1 (Btk) based biopesticides was studied in shake flask as well as in computer-controlled fermentors. SIW was fortified with different concentrations (0%; 0.05%; 0.1%; 0.2%; 0.3% w/v) of colloidal chitin and its consequences were ascertained in terms of Btk growth (total cell count and viable spore count), chitinase, protease and amylase activities and entomotoxicity. At optimum concentration of 0.2% w/v colloidal chitin, the entomotoxicity of fermented broth and suspended pellet was enhanced from 12.4 × 109 (without chitin) to 14.4 × 109 SBU/L and from 18.2 × 109 (without chitin) to 25.1 × 109 SBU/L, respectively. Further, experiments were conducted for Btk growth in a computer-controlled 15 L bioreactor using SIW as a raw material with (0.2% w/v chitin, to induce chitinase) and without fortification of colloidal chitin. It was found that the total cell count, spore count, delta-endotoxin concentration (alkaline solubilised insecticidal crystal proteins), amylase and protease activities were reduced whereas the entomotoxicity and chitinase activity was increased with chitin fortification. The chitinase activity attained a maximum value at 24 h (15 mU/ml) and entomotoxicity of suspended pellet reached highest (26.7 × 109 SBU/L) at 36 h of fermentation with chitin supplementation of SIW. In control (without chitin), the highest value of entomotoxicity of suspended pellet (20.5 × 109 SBU/L) reached at 48 h of fermentation. A quantitative synergistic action of delta-endotoxin concentration, spore concentration and chitinase activity on the entomotoxicity against spruce budworm larvae was observed.  相似文献   
164.
Alcaligenes faecalis G utilized 95–97% of 5–15 g -caprolactam l–1 in 24–48 h over a pH range of 6–8.5 and at 23–40 °C, without complex nutrient requirement. In the absence of KH2PO4 and K2HPO4/MgSO4 in the medium, only 7.6% and 0.2% of 10 g caprolactam l–1 was utilized, respectively. The chemical oxygen demand (COD) of the wastewater of nylon-6 plant was mainly due to its caprolactam content. A. faecalis G decreased the caprolactam content and COD of the wastewater by 80–90% of the original in spite of the wastewater having higher caprolactam content (3600 mg l–1) and COD (7700 mg l–1) than those of any of the previous reports.  相似文献   
165.
The objective of this research was to compare the potential of native plants for the phytoaccumulation of heavy metals (HM). Thirteen predominant plant species (including trees, bushes and grasses) namely Ricinus communis, Ipomoea carnea, Cannabis sativa, Parthenium hysterophorus, Acacia nilotica, Dalbergia sissoo, Acacia modesta, Solanum nigrum, Xanthium stromarium, Chenopodium album, Cynodon dactylon, Eleusine indica, and Dactyloctenium aegyptium were collected from the wastewater originated from Hattar industrial estate of Pakistan, Plants shoots and roots were analyzed for heavy metals / metalloid: Pb, Cr, Cd, Zn, Fe, Ni, and As. Among plant species, the accumulation potential for HM varied depending on the type of element. Regardless of the plant species, HM concentrations varied in the order of Fe > Zn > Cr > Pb > Ni > Cd > As. Tree species of R. communis, A. nilotica, A. modesta, and D. sissoo exhibited an enhanced concentrations of metals. Accumulation pattern of Fe, Pb, Cd, and As in plants could be related to the HM composition of soil and wastewater. Most of the species exhibited higher HM composition in the root as compared to shoot. The species that found with greater ability to absorb HM in the root, got higher HM concentrations in its shoot. Shoot tissue concentrations of HM were attained by the species as D. sissoo > A. modesta > A. nilotica > R. communis > I. carnea > C. album > E. indica > P. hysterophorus > S. nigrum > C. sativa > D. aegyptium > X. strumarium > C. dactylon. Based on results, tree plants were noticed as higher accumulators of HM in polluted soils.  相似文献   
166.
The recovery and valorization of metals and rare earth metals from wastewater are of great importance to prevent environmental pollution and recover valuable resources. Certain bacterial and fungal species are capable of removing metal ions from the environment by facilitating their reduction and precipitation. Even though the phenomenon is well documented, little is known about the mechanism. Therefore, we systematically investigated the influence of nitrogen sources, cultivation time, biomass, and protein concentration on silver reduction capacities of cell-free cultivation media (spent media) of Aspergillus niger, A. terreus, and A. oryzae. The spent medium of A. niger showed the highest silver reduction capacities with up to 15 μmol per milliliter spent medium when ammonium was used as the sole N-source. Silver ion reduction in the spent medium was not driven by enzymes and did not correlate with biomass concentration. Nearly full reduction capacity was reached after 2 days of incubation, long before the cessation of growth and onset of the stationary phase. The size of silver nanoparticles formed in the spent medium of A. niger was influenced by the nitrogen source, with silver nanoparticles formed in nitrate or ammonium-containing medium having an average diameter of 32 and 6 nm, respectively.  相似文献   
167.
In order to identify potential microorganisms with high denitrifying capacity from tannery wastewaters, 1000 pure cultures of bacterial isolates from Modjo Tannery Pilot and Ethio-tannery wastewater treatment plants (WWTP), in Ethiopia, were investigated. Twenty-eight isolates were selected as efficient denitrifiers. These were Gram-negative rods, oxidase and catalase positive denitrifying organisms. The 28 denitrifying strains were further classified according to their biochemical fingerprints into three different phylogenetic groups (BPT1, BPT2 and BPT3) and seven singles. Isolates B79T, B11, B12, B15, B28 and B38 belonging to the BPT3 cluster were found to be the most efficient denitrifying bacteria. All phenotypic studies, including cellular fatty acid profiles, showed that the 6 BPT3 isolates were closely related to each other. The 16S rRNA partial sequence analysis of type strain B79T(CCUG 45880) indicated a sequence similarity of 99% to Brachymonas denitrificans JCM9216 (D14320) in the β-subdivision of proteobacteria. Further studies of the effects of chromium III and sulphide on the six Brachymonas denitrificans strains indicated that denitrification by the isolates were inhibited 50% at concentrations of 54 and 96 mg/l, respectively. The efficient isolates characterized in this study are of great value because of their excellent denitrifying properties and relatively high tolerance to the concentrations of toxic compounds (70 mg chromium/l and 160 mg sulphide/l) prevailing in tannery wastewaters.  相似文献   
168.
169.
Two kinds of biocarriers were adopted and a combined process of “AMC (Anaerobic microorganism carrier)-UASB and PBG (Porous bio-gel)-MBBR” was operated at the pilot scale for the treatment of real textile wastewater. The influence mechanism of the two carriers on the start-up, pollutant removal and sludge reduction were investigated within 118 days of operation. The dominant functional bacteria in anaerobic and aerobic systems were identified by high-throughput sequencing, and the possible ways and related mechanisms of nutrient removal and sludge reduction were analyzed based on the data. 37.0 ± 7.5 % and 53 ± 12.7 % of COD removal efficiencies were achieved in anaerobic system and aerobic system, respectively. Ammonia nitrogen concentration decreased from 20 to 45 to 3.49 ± 0.54 mg/L after treatment. An anaerobe was found to be closely related to color removal, which existed in both anaerobic and aerobic systems, achieving 84.0 % of color removal. With the operation of the system, the sludge yield decreased gradually. The sludge yields of anaerobic and aerobic systems were calculated individually and compared with similar studies. Aging biofilms were characterized to explore the factors associated with biofilm renewal.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号