首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   30篇
  国内免费   1篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   16篇
  2020年   16篇
  2019年   13篇
  2018年   11篇
  2017年   12篇
  2016年   18篇
  2015年   10篇
  2014年   14篇
  2013年   24篇
  2012年   13篇
  2011年   8篇
  2010年   8篇
  2009年   13篇
  2008年   17篇
  2007年   18篇
  2006年   11篇
  2005年   3篇
  2004年   7篇
  2003年   5篇
  2002年   7篇
  2001年   11篇
  2000年   3篇
  1999年   6篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
排序方式: 共有305条查询结果,搜索用时 15 毫秒
11.
The Static Optimization (SO) solver in OpenSim estimates muscle activations and forces that only equilibrate applied moments. In this study, SO was enhanced through an open-access MATLAB interface, where calculated muscle activations can additionally satisfy crucial mechanical stability requirements. This Stability-Constrained SO (SCSO) is applicable to many OpenSim models and can potentially produce more biofidelic results than SO alone, especially when antagonistic muscle co-contraction is required to stabilize body joints. This hypothesis was tested using existing models and experimental data in the literature. Muscle activations were calculated by SO and SCSO for a spine model during two series of static trials (i.e. simulation 1 and 2), and also for a lower limb model (supplementary material 2). In simulation 1, symmetric and asymmetric flexion postures were compared, while in simulation 2, various external load heights were compared, where increases in load height did not change the external lumbar flexion moment, but necessitated higher EMG activations. During the tasks in simulation 1, the predicted muscle activations by SCSO demonstrated less average deviation from the EMG data (6.8% −7.5%) compared to those from SO (10.2%). In simulation 2, SO predicts constant muscle activations and forces, while SCSO predicts increases in the average activations of back and abdominal muscles that better match experimental data. Although the SCSO results are sensitive to some parameters (e.g. musculotendon stiffness), when considering the strategy of the central nervous system in distributing muscle forces and in activating antagonistic muscles, the assigned activations by SCSO are more biofidelic than SO.  相似文献   
12.
  1. Hormones are extensively known to be physiological mediators of energy mobilization and allow animals to adjust behavioral performance in response to their environment, especially within a foraging context.
  2. Few studies, however, have narrowed focus toward the consistency of hormonal patterns and their impact on individual foraging behavior. Describing these relationships can further our understanding of how individuals cope with heterogeneous environments and exploit different ecological niches.
  3. To address this, we measured between‐ and within‐individual variation of basal cortisol (CORT), thyroid hormone T3, and testosterone (TEST) levels in wild adult female Galápagos sea lions (Zalophus wollebaeki) and analyzed how these hormones may be associated with foraging strategies. In this marine predator, females exhibit one of three spatially and temporally distinct foraging patterns (i.e., “benthic,” “pelagic,” and “night” divers) within diverse habitat types.
  4. Night divers differentiated from other strategies by having lower T3 levels. Considering metabolic costs, night divers may represent an energetically conservative strategy with shorter dive durations, depths, and descent rates to exploit prey which migrate up the water column based on vertical diel patterns.
  5. Intriguingly, CORT and TEST levels were highest in benthic divers, a strategy characterized by congregating around limited, shallow seafloors to specialize on confined yet reliable prey. This pattern may reflect hormone‐mediated behavioral responses to specific risks in these habitats, such as high competition with conspecifics, prey predictability, or greater risks of predation.
  6. Overall, our study highlights the collective effects of hormonal and ecological variation on marine foraging. In doing so, we provide insights into how mechanistic constraints and environmental pressures may facilitate individual specialization in adaptive behavior in wild populations.
  相似文献   
13.
14.
Abstract: We describe a method to convert continuously collected time-depth data from archival time-depth recorders (TDRs) into activity budgets for a benthic-foraging marine mammal. We used data from 14 TDRs to estimate activity-specific time budgets in sea otters (Enhydra lutris) residing near Cross Sound, southeast Alaska, USA. From the TDRs we constructed a continuous record of behavior for each individual over 39-46 days during summer of 1999. Behaviors were classified as foraging (diving to the bottom), other diving (traveling, grooming, interacting), and nondiving (assumed resting). The overall average activity budget (proportion of 24-hr/d) was 0.37 foraging (8.9 hr/d), 0.11 in other diving (2.6 hr/d), and 0.52 nondiving time (12.5 hr/d). We detected significant differences in activity budgets among individuals and between groups within our sample. Historically, the sea otter population in our study area had been expanding and sequentially reoccupying vacant habitat since their reintroduction to the area in the 1960s, and our study animals resided in 2 adjacent yet distinct locations. Males (n = 5) and individuals residing in recently occupied habitat (n = 4) spent 0.28-0.30 of their time foraging (6.7-7.2 hr/d), 0.17-0.18 of their time in other diving behaviors (4.1-4.3 hr/d), and 0.53-0.54 of their time resting (12.7-13.0 hr/d). In contrast, females (n = 9) and individuals residing in longer occupied habitat (n = 10) spent 0.40 of their time foraging (9.6 hr/d), 0.08-0.09 of their time in other diving behaviors (1.9-2.2 hr/d), and 0.51-0.52 of their time resting (12.2-12.5 hr/d). Consistent with these differences, sea otters residing in more recently occupied habitat captured more and larger clams (Saxidomus spp., Protothaca spp., Macoma spp., Mya spp., Clinocardium spp.) and other prey, and intertidal clams were more abundant and larger in this area. We found that TDRs provided data useful for measuring activity time budgets and behavior patterns in a diving mammal over long and continuous time periods. Fortuitous contrasts in time budgets between areas where our study animals resided suggest that activity time budgets estimated from TDRs may be a sensitive indicator of population status, particularly in relation to prey availability.  相似文献   
15.
16.
This paper revisits the contact hypothesis by assessing differences in generalized trust among participants of Turkish non-profit organizations and ethnically mixed organizations in Amsterdam. Most voluntary sector research takes the contact hypothesis at its core and assumes that the concentration of ethnic minorities in non-profit organizations is detrimental to learning generalized trust. These studies assume that diversity within organizations is better for developing generalized norms without examining participation in ethnically homogenous organizations. I address this gap in the literature by analysing the variance of generalized trust among organizations and their participants. I achieve this through the analysis of purposively designed survey data. The findings suggest that a contact mechanism at voluntary organizations is problematic and should not be asserted uncritically.  相似文献   
17.
It is notoriously difficult to measure physiological parameters in cryptic free‐ranging marine mammals. However, it is critical to understand how marine mammals manage their energy expenditure and their diving behavior in environments where the predation risks are low and where survival is mainly linked to capacities to maintain physiological homeostasis and energy budget balance. Elephant seals are top marine predators that dive deeply and continuously when at sea. Using acoustic recorders deployed on two postbreeding southern elephant seals (SES) females, we developed methods to automatically estimate breathing frequency at the surface. Using this method, we found that seals took successive identical breaths at high frequency (0.29 Hz) when recovering at the surface and that breath count was strongly related to postdive surfacing time. In addition, dive depth was the main factor explaining surfacing time through the effects of dive duration and total underwater swimming effort exerted. Finally, we found that recovery does not only occur over one dive timescale, but over a multidive time scale for one individual. The way these predators manage their recovery will determine how they respond to the change in oceanic water column structure in the future.  相似文献   
18.
19.
20.
Examination of modifications of EEG in humans induced by cold stimulation of the arm fingers showed that the EEG frequency composition noticeably depended on this thermal influence (in the relaxed state with no movements or during realization of voluntary cyclic movements by the fingers of another arm). In the resting state, cold stimulation mostly induced intensification of the delta activity, while, when coinciding with the performance of voluntary movements, it also resulted in increases in the powers of oscillations of the alpha1 and beta1 ranges. The structure of changes in the coefficients of coherence under the influence of cooling also depended on the conditions of testing (in the resting state or during motor activity). Therefore, the effect of tonic cold stimulation on the interaction between synchronizing and desynchronizing cerebral systems and interrelations between different cortical zones was modified under conditions of realization of a motor function. Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 268–270, May–June, 2008.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号