首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   982篇
  免费   138篇
  国内免费   19篇
  2024年   3篇
  2023年   6篇
  2022年   20篇
  2021年   18篇
  2020年   35篇
  2019年   34篇
  2018年   40篇
  2017年   35篇
  2016年   41篇
  2015年   49篇
  2014年   54篇
  2013年   64篇
  2012年   35篇
  2011年   31篇
  2010年   35篇
  2009年   29篇
  2008年   21篇
  2007年   31篇
  2006年   24篇
  2005年   35篇
  2004年   53篇
  2003年   41篇
  2002年   34篇
  2001年   30篇
  2000年   45篇
  1999年   40篇
  1998年   37篇
  1997年   30篇
  1996年   17篇
  1995年   10篇
  1994年   9篇
  1993年   14篇
  1992年   13篇
  1991年   18篇
  1990年   6篇
  1989年   20篇
  1988年   10篇
  1987年   12篇
  1986年   11篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   8篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1977年   1篇
  1976年   3篇
  1972年   1篇
  1950年   1篇
排序方式: 共有1139条查询结果,搜索用时 24 毫秒
21.
Membrane fractions highly enriched in chicken lens MIP (MIP28) were found to form ion channels when incorporated into planar lipid bilayers. The channels displayed prominent unitary conductances of about 60 and 290 pS in symmetric 150 mm KCl solution and were slightly anion selective. For both depolarizing and hyperpolarizing voltages, voltage sensitivity of the MIP28-induced conductance could be fit by a Boltzmann relation, symmetric around zero mV, with V 0 = 18.5 mV, n= 4.5 and g min/g max= 0.17. Channel properties were not appreciably altered by pH in the range of 5.8 to 7, although channel incorporation was observed to occur more frequently at lower pH values. Calcium, at millimolar concentrations, decreased the channel mean open time. Partial proteolysis of MIP28 to yield MIP21 did not appreciably affect single-channel conductance or voltage sensitivity of the reconstituted channels. MIP28 was not phosphorylated by cAMP dependent protein kinase (PKA). Although unitary conductance and selectivity of the chicken MIP channel are similar to those reported for the bovine MIP (MIP26), the voltage sensitivity of MIP28 was higher than that of the bovine homologue, and voltage sensitivity of MIP28 was not modulated by treatments previously shown to affect MIP26 voltage gating (partial proteolysis and protein phosphorylation by PKA: (Ehring et al., 1990). The existence of such strikingly different functional properties in highly homologous channel isoforms may provide a useful system for exploration of the structure-function relations of MIP channels. Received: 27 March 1996/Revised: 5 August 1996  相似文献   
22.
Hyperpolarization-activated K channels (K H channels) in the plasmalemma of guard cells operate at apoplastic pH range of 5 to over 7. Using patch clamp in a whole-cell mode, we characterized the effect of varying the external pH between 4.4–8.1 on the activity of the K H channels in isolated guard cell protoplasts from Vicia faba leaves. Acidification from pH 5.5 to 4.4 increased the macroscopic conductance of the K H channels by 30–150% while alkalinization from pH 5.5 to 8.1 decreased it only by roughly 15%. The voltage-independent maximum cell conductance, increased by ∼60% between pH 8.1 and 4.4 with an apparent pK a of 5.3, most likely owing to the increased availability of channels. Voltage-dependent gating was affected only between pH 5.5 and 4.4. Acidification in this range shifted the voltage-dependent open probability by over 10 mV. We interpret this shift as an increase of the electrical field sensed by the gating subunits caused by the protonation of external negative surface charges. Within the framework of a surface charge model the mean spacing of these charges was ∼30 ? and their apparent dissociation constant was 10−4.6. The overall voltage sensitivity of gating was not altered by pH changes. In a subgroup of protoplasts analyzed within the framework of a Closed-Closed-Open model, the effect of protons on gating was limited to shifting of the voltage-dependence of all four transition rate constants. Received: 26 April 1996/Revised: 29 June 1996  相似文献   
23.
包永德  朱辉 《生理学报》1996,48(6):587-589
爪蟾卵母细胞经注射鲫鱼视网总RNA后,可表达大量电压依赖性钾离子通道。在此基础上,我们进一步发现,一个特定序列的寡核苷酸能专一地抑制该通道的表达。由于我们设计与合成的该片段与果蝇、小鼠中已克隆的钾通道中编码N端的一个多肽的mRNA完全互补,因此推测:鲫鱼视网膜中的K这个区域与其它物种的K通道有高度同源性,这为克隆该基因和研究它的功能提供了重要资料。  相似文献   
24.
The effects of philanthotoxin-343 (PhTX-343; tyrosyl-butanoyl-spermine) and photolabile analogues of this synthetic toxin on locust (Schistocerca gregaria) skeletal muscle have been investigated using whole muscle preparations (twitch contractions), single muscle fibres (excitatory postsynaptic currents (EPSCs)) and muscle membrane patches containing single quisqualate-sensitive glutamate receptors (qGluR). Analogues containing an azido group attached to either the butanoyl side-chain of PhTX-343 or as a substitute for the hydroxyl moiety of the tyrosyl residue were about 6 fold more potent antagonists than PhTX-343; those with an azido group located at the distal end of the toxin molecule were generally 2–3 fold less potent than PhTX-343. When these compounds were tested in subdued light, they were reversible antagonists of the muscle twitch, EPSC and qGluR. When a muscle was irradiated with U.V. during application of photolabile toxin combined with either neural stimulation of the muscle orl-glutamate application, antagonism of the twitch, EPSC and qGluR was complete and irreversible.  相似文献   
25.
The effects of lead on Ca2+ homeostasis in nerve terminals was studied. Incubation with leadin vitro stimulated the activity of calmodulin and the maximum effect was observed at 30 M lead, higher concentrations had an inhibitory effect.In vivo exposure to lead increased the activity of calmodulin by 45%. Lead had an inhibitory effect on Ca2+ ATPase activity in both calmodulin-rich and calmodulin-depleted synaptic plasma membranes, the IC50 values for inhibition being 13.34 and 16.69 M respectively. Exogenous addition of calmodulin (5 g) and glutathione (1 mM) to calmodulin rich synaptic plasma membranes reversed the inhibition by IC50 concentration of lead.In vivo exposure of lead also significantly reduced the Ca2+ ATPase activity, resulting in an increase in intrasynaptosomal calcium. Concomitant with the increase in intrasynaptosomal calcium, lipid peroxidation values also increased significantly in lead-treated animals. In addition lead also had an inhibitory effect on depolarization induced Ca2+ uptake and the inhibition was found to be a competitive one. The results sugest that lead exerts its toxic effects by modifications of the intracellular calcium messenger system which would have serious consequences on neuronal functioning.  相似文献   
26.
27.
Piñeros  Miguel  Tester  Mark 《Plant and Soil》1993,155(1):119-122
Single Ca2+ channel records were obtained from plasma membrane-enriched fractions of wheat roots incorporated into artificial planar lipid bilayers. The channel had a unitary conductance of 15 pS for a 10 to 95 mM CaCl2 gradient (cytoplasm: outside of the cell). The voltage dependence displayed by the channel agreed with that expected for Ca2+ channels in the plasma membrane. The channel gating was strongly modified by addition of 20 M extracellular verapamil (a Ca2+ channel antagonist). Extracellular AlCl3 (70 M, pH 4.9) almost completely blocked the channel.  相似文献   
28.
We studied the effects of H2O/D2O substitution on the permeation and gating of the large conductance Ca2+-activated K+ channels inChara gymnophylla droplet membrane using the patchclamp technique. The selectivity sequence of the channel was: K+>Rb+≫Li+, Na+, Cs+ and Cl. The conductance of this channel in symmetric 100mm KCl was found to be 130 pS. The single channel conductance was decreased by 15% in D2O as compared to H2O. The blockade of channel conductance by cytosolic Ca2+ weakened in D2O as a result of a decrease in zero voltage Ca2+ binding affinity by a factor of 1.4. Voltage-dependent channel gating was affected by D2O primarily due to the change in Ca2+ binding to the channel during the activation step. The Hill coefficient for Ca2+ binding was 3 in D2O and around 1 in H2O. The values of the Ca2+ binding constant in the open channel conformation were 0.6 and 6 μm in H2O and D2O, respectively, while the binding in the closed conformation was much less affected by D2O. The H2O/D2O substitution did not produce a significant change in the slope of channel voltage dependence but caused a shift as large as 60 mV with 1mm internal Ca2+.  相似文献   
29.
30.
Abstract: Substance P and neurokinin A both potentiated N -methyl- d -aspartate (NMDA)-induced currents recorded in acutely isolated neurons from the dorsal horn of the rat. To elucidate the mechanism underlying this phenomenon, we measured the effects of tachykinins and glutamate receptor agonists on [Ca2+]i in these cells. Substance P, but not neurokinin A, increased [Ca2+]i in a subpopulation of neurons. The increase in [Ca2+]i was found to be due to Ca2+ influx through voltage-sensitive Ca2+ channels. Substance P and neurokinin A also potentiated the increase in [Ca2+]i produced by NMDA, but not by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, or 50 m M K+. Phorbol esters enhanced the effects of NMDA and staurosporine inhibited the potentiation of NMDA effects by tachykinins. It is concluded that activation of protein kinase C may mediate the enhancement of NMDA effects by tachykinins in these cells. However, the effects of tachykinins on [Ca2+]i can be dissociated from their effects on NMDA receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号