首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   982篇
  免费   138篇
  国内免费   19篇
  2024年   3篇
  2023年   6篇
  2022年   20篇
  2021年   18篇
  2020年   35篇
  2019年   34篇
  2018年   40篇
  2017年   35篇
  2016年   41篇
  2015年   49篇
  2014年   54篇
  2013年   64篇
  2012年   35篇
  2011年   31篇
  2010年   35篇
  2009年   29篇
  2008年   21篇
  2007年   31篇
  2006年   24篇
  2005年   35篇
  2004年   53篇
  2003年   41篇
  2002年   34篇
  2001年   30篇
  2000年   45篇
  1999年   40篇
  1998年   37篇
  1997年   30篇
  1996年   17篇
  1995年   10篇
  1994年   9篇
  1993年   14篇
  1992年   13篇
  1991年   18篇
  1990年   6篇
  1989年   20篇
  1988年   10篇
  1987年   12篇
  1986年   11篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   8篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1977年   1篇
  1976年   3篇
  1972年   1篇
  1950年   1篇
排序方式: 共有1139条查询结果,搜索用时 31 毫秒
11.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. In the giant-celled green algaChara corallina, K+ currents in the plasmalemma were measured during the action potential and when the cell was depolarized to the K+ equilibrium potential in high external K+ concentrations. Currents in both conditions were reduced by externally added tetraethylammonium (TEA+), Ba2+, Na+ and Cs+. In contrast to inhibition by TEA+, the latter three ions inhibited inward K+ current in a voltage-dependent manner, and reduced inward current more than outward. Ba2+ and Na+ also appeared to inhibit outward current in a strongly voltage-dependent manner. The blockade by Cs+ is studied in more detail in the following paper. TEA+ inhibited both inward and outward currents in a largely voltage-independent manner, with an apparentK D of about 0.7 to 1.1mm, increasing with increasing external K+. All inhibitors reduced current towards a similar linear leak, suggesting an insensitivity of the background leak inChara to these various K+ channel inhibitors. The selectivity of the channel to various monovalent cations varied depending on the method of measurement, suggesting that ion movement through the K+-selective channel may not be independent.  相似文献   
12.
Four different nucleotide-gated ion channels are discussed in terms of their biophysical properties and their importance in cell physiology. Channels activated directly by cGMP are present in vertebrate and invertebrate photoreceptors. In both cases cGMP increases the fraction of time the channel remains in the open state. At least three cGMP molecules are involved in channel opening in vertebrate photoreceptors and the concentration of the cyclic nucleotide to obtain the half maximal effect is about 15 µM. The light-dependent channel of both vertebrates and invertebrates is poorly cation selective. The vertebrate channel allows divalent cations to pass through 10–15-fold more easily than monovalent ions. In agreement with their preference for divalent cations, this channel is blocked byl-cis Dialtazem, a molecule that blocks certain types of calcium channels. In olfactory neurons a channel activated by both cAMP and cGMP is found and, as in the light-dependent channel, several molecules of the nucleotide are needed to open the channel with a half maximal effect obtained in the range of 1–40 µM. The channel is poorly cationic selective. A K+ channel directly and specifically activated by cAMP is found inDrosophila larval muscle. At least three cAMP molecules are involved in the opening reaction. Half-maximal effect is obtained at about 50 µM. This channel is blocked by micromolar amount of tetraethylammonium applied internally. Interestingly, this channel has a probability of opening 10–20-fold larger in the mutantdunce, a mutant that possesses abnormally elevated intracellular cAMP level, than in the wild type.  相似文献   
13.
Summary The voltage-dependence of channel formation by alamethicin and its natural analogues can be described by a dipole flip-flop gating model, based on electric field-induced transbilayer orientational movements of single molecules. These field-induced changes in orientation result from the large permanent dipole moment of alamethicin, which adopts -helical conformation in hydrophobic medium. It was, therefore, supposed that the only structural requirement for voltage-dependent formation of alamethicin-type channels might be a rigid lipophilic helical segment of minimum length.In order to test this hypothesis we synthesized a family of lipophilic polypeptides—Boc-(Ala-Aib-Ala-Aib-Ala) n -OMe,n=1–4—which adopt -helical conformation forn=2–4 and studied their interaction with planar lipid bilayers. Surprisingly, despite their large difference in chain length, all four polypeptides showed qualitatively similar behavior. At low field strength of the membrane electric field these polypeptides induce a significant, almost voltage-independent increase of the bilayer conductivity. At high field strength, however, a strongly voltage-dependent conductance increase occurs similar to that observed with alamethicin. It results from the opening of a multitude of ion translocating channels within the membrane phase.The steady-state voltage-dependent conductance depends on the 8th–9th power of polypeptide concentration and involves the transfer of 4–5 formal elementary charges. From the power dependences on polypeptide concentration and applied voltage of the time constants in voltage-jump current-relaxation experiments, it is concluded that channels could be formed from preexisting dodecamer aggregates by the simultaneous reorientation of six formal elementary charges. Channels exhibit large conductance values of several nS, which become larger towards shorter polypeptide chain length. A mean channel diameter of 19 Å is estimated corresponding roughly to the lumen diameter of a barrel comprised of 10 -helical staves. Similar to experiments with the N-terminal Boc-derivative of alamethicin we did not observe the burst sequence of nonintegral conductance steps typical of natural (N-terminal Ac-Aib)-alamethicin. Saturation in current/voltage curves as well as current inactivation in voltage-jump current-relaxation experiments are found. This may be understood by assuming that channels are generated as dodecamers but, while reaching the steady state, reduce their size to that of an octamer or nonamer. We conclude that the overall behavior of these synthetic polypeptides is very similar to that of alamethicin. They exhibit the same concentration and voltage-dependences but lack the stabilizing principle of resolved channel states characteristic of alamethicin.  相似文献   
14.
Summary Injection of depolarizing current into vegetative cells of the water moldBlastocladiella emersonii elicits a regenerative response that has the electrical characteristics of an action potential. Once they have been taken past a threshold of about –40 mV, cells abruptly depolarize to +20 mV or above; after an interval ranging from several hundred milliseconds to a few seconds, the cells spontaneously return to their resting potential near –100 mV. When the action potential was analyzed with voltage-clamp recording, it proved to be biphasic. The initial phase reflects an influx of calcium ions through voltage-sensitive channels that also carry Sr2+ ions. The delayed, and more extended, phase of inward current results from the efflux of chloride and other anions. The anion channels are broadly selective, passing chloride, nitrate, phosphate, acetate, succinate and even PIPES. The anion channels open in response to the entry of calcium ions, but do not recognize Sr2+. Calcium channels, anion channels and calcium-specific receptors that link the two channels appear to form an ensemble whose physiological function is not known. Action potentials rarely occur spontaneously but can be elicited by osmotic downshock, suggesting that the ion channels may be involved in the regulation of turgor.  相似文献   
15.
Summary A voltage-dependent anion-selective channel, VDAC, is found in outer mitochondrial membranes. VDAC's conductance is known to decrease as the transmembrane voltage is increased in either the positive or negative direction. Charged groups on the channel may be responsible for this voltage dependence by allowing the channel to respond to an applied electric field. If so, then neutralization of these charges would eliminate the voltage dependence. Channels in planar lipid bilayers which behaved normally at pH 6 lost much of their voltage dependence at high pH. Raising the pH reduced the steepness of the voltage dependence and raised the voltage needed to close half the channels. In contrast, the energy difference between the open and closed state in the absence of a field was changed very little by the elevated pH. The groups being titrated had an apparent pK of 10.6. From the pK and chemical modification, lysine epsilon amino groups are the most likely candidates responsible for VDAC's ability to respond to an applied electric field.  相似文献   
16.
Summary The permeability of the Na channel of squid giant axon to organic cations and small nonelectrolytes was studied. The compounds tested were guanidinium, formamidinium, and14C-labeled urea, formamide, thiourea, and acetone. Permeability was calculated from measurements of reversal potential and influx on internally perfused, voltage clamped squid axons. The project had two objectives: (1) to determine whether different methods of measuring the permeability of organic cations yield similar values and (2) to see whether neutral analogs of the organic cations can permeate the Na channel. Our results show that the permeability ratio of sodium to a test ion depends upon the ionic composition of the solution used. This finding is consistent with the view put forward previously that the Na channel can contain more than one ion at a time. In addition, we found that the uncharged analogs of permeant cations are not measurably permeant through the Na channel, but instead probably pass through the lipid bilayer.  相似文献   
17.
Summary Cellular impalements were used in combination with standard transepithelial electrical measurements to evaluate some of the determinants of the spontaneous lumen-positive voltage,V e , which attends net Cl absorption,J Cl net , and to assess how ADH might augment bothJ Cl met andV e in the mouse medullary thick ascending limb of Henle microperfusedin vitro. Substituting luminal 5mm Ba++ for 5mm K+ resulted in a tenfold increase in the apical-to-basal membrane resistance ratio,R c /R bl , and increasing luminal K+ from 5 to 50mm in the presence of luminal 10–4 m furosemide resulted in a 53-mV depolarization of apical membrane voltage,V a . Thus K+ accounted for at least 85% of apical membrane conductance. Either with or without ADH. 10–4 m luminal furosemide reducedV e andJ Cl net to near zero values and hyperpolarized bothV a andV bl , the voltage across basolateral membranes; however, the depolarization ofV bl was greater in the presence than in the absence of hormone while the hormone had no significant effect on the depolarization ofV a , Thus ADH-dependent increases inV b were referable to greater depolarizations ofV bl in the presence of ADH than in the absence of ADH 68% of the furosemide-induced hyperpolarization ofV a was referable to a decrease in the K+ current across apical membranes, but, at a minimum, only 19% of the hyperpolarization ofV bl could be accounted for by a furosemide-induced reduction in basolateral membrane Cl current. Thus an increase in intracellular Cl activity may have contributed to the depolarization ofV bl during net Cl absorption, and the intracellular Cl activity was likely greater with ADH than without hormone. Since ADH increases apical K+ conductance and since the chemical driving force for electroneutral Na+,K+,2Cl cotransport from lumen to cell may have been less in the presence of ADH than in the absence of hormone, the cardinal effects of ADH may have been to increase the functional number of both Ba++-sensitive conductance K+ channels and electroneutral Na+,K+,2Cl cotransport units in apical plasma membranes.  相似文献   
18.
Covalently bound intermediates of enniatin B synthesis could be isolated from enniatin synthetase by treatment with performic acid. By comparison with products of mild alkaline cleavage of authentic enniatin B they could be identified as the dipeptide D-2-hydroxyisovaleryl-N-methylvaline and the corresponding tetrapeptide. Synthesis of enniatins apparently proceeds via condensation of dipeptides. This was confirmed by the use of the substrate analogue isovaleric acid, which has shown to be a strong inhibitor for enniatin synthesis by formation of N-isovaleryl-N-methyl valine.  相似文献   
19.
Summary Ca2+- and Ba2+-permeable channel activity from adult rat ventricular myocytes, spontaneously appeared in the three single-channel recording configurations: cell-attached, and excised inside-out or outside-out membrane patches. Single-channel activity was recorded at steady-state applied membrane potentials including the entire range of physiologic values, and displayed no rundown in excised patches. This activity occurred in irregular bursts separated by quiescent periods of 5 to 20 min in cell-attached membrane patches, whereas in excised patch experiments, this period was reduced to 2 to 10 min. During activity, a variety of kinetic behaviors could be observed with more or less complex gating patterns. Three conductance levels: 22, 45 and 78 pS were routinely observed in the same excised membrane patch, sometimes combining to give a larger level. These channels were significantly permeable to divalent cations and showed little or no permeability to potassium or sodium ions. The inorganic blockers of voltage-gated Ca channels, cobalt (2mm), cadmium (0.5mm) or nickel (3mm), had no apparent effect on these spontaneous unitary currents carried by barium ions. Under 10–5 m bay K 8644 or nitrendipine, the activity was clearly increased in about half of the tested excised inside-out membrane patches. Both dihydropyridines enhanced openings of the larger conductance level, which was only very occasionally seen under control conditions. When the single-channel activity became sustained under 5×10–6 m Bay K 8644, it was possible to calculate the mean unitary current at different membrane potentials and show that the mean current value increased with membrane potential.  相似文献   
20.
Summary We have investigated the ion permeability properties of sodium channels purified from eel electroplax and reconstituted into liposomes. Under the influence of a depolarizing diffusion potential, these channels appear capable of occasional spontaneous openings. Fluxes which result from these openings are sodium selective and blocked (from opposite sides of the membrane) by tetrodotoxin (TTX) and moderate concentrations of the lidocaine analogue QX-314. Low concentrations of QX-314 paradoxically enhance this channel-mediated flux. N-bromoacetamide (NBA) and N-bromosuccinimide (NBS), reagents which remove inactivation gating in physiological preparations, transiently stimulate the sodium permeability of inside-out facing channels to high levels. The rise and subsequent fall of permeability appear to result from consecutive covalent modifications of the protein. Titration of the protein with the more reactive NBS can be used to produce stable, chronically active forms of the protein. Low concentrations of QX-314 produce a net facilitation of channel activation by NBA, while higher concentrations produce block of conductance. This suggests that rates of modifications by NBA which lead to the activation of permeability are influenced by conformational changes induced by QX-314 binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号