首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83921篇
  免费   5772篇
  国内免费   3905篇
  2024年   196篇
  2023年   1287篇
  2022年   2085篇
  2021年   2700篇
  2020年   2555篇
  2019年   2988篇
  2018年   2869篇
  2017年   2067篇
  2016年   2066篇
  2015年   2651篇
  2014年   4916篇
  2013年   6277篇
  2012年   3728篇
  2011年   5074篇
  2010年   3853篇
  2009年   4251篇
  2008年   4394篇
  2007年   4467篇
  2006年   3979篇
  2005年   3569篇
  2004年   3148篇
  2003年   2758篇
  2002年   2418篇
  2001年   1648篇
  2000年   1408篇
  1999年   1425篇
  1998年   1314篇
  1997年   1128篇
  1996年   1078篇
  1995年   967篇
  1994年   920篇
  1993年   820篇
  1992年   729篇
  1991年   692篇
  1990年   533篇
  1989年   493篇
  1988年   443篇
  1987年   430篇
  1986年   381篇
  1985年   551篇
  1984年   732篇
  1983年   554篇
  1982年   598篇
  1981年   453篇
  1980年   452篇
  1979年   365篇
  1978年   276篇
  1977年   212篇
  1976年   185篇
  1975年   150篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
《Cytokine》2015,73(2):224-225
Balanced regulation of cytokine secretion in T cells is critical for maintenance of immune homeostasis and prevention of autoimmunity. The Rho-associated kinase (ROCK) 2 signaling pathway was previously shown to be involved in controlling of cellular movement and shape. However, recent work from our group and others has demonstrated a new and important role of ROCK2 in regulating cytokine secretion in T cells. We found that ROCK2 promotes pro-inflammatory cytokines such as IL-17 and IL-21, whereas IL-2 and IL-10 secretion are negatively regulated by ROCK2 under Th17-skewing activation. Also, in disease, but not in steady state conditions, ROCK2 contributes to regulation of IFN-γ secretion in T cells from rheumatoid arthritis patients. Thus, ROCK2 signaling is a key pathway in modulation of T-cell mediated immune responses underscoring the therapeutic potential of targeted inhibition of ROCK2 in autoimmunity.  相似文献   
53.
Summary The occurrence of 2n pollen-producing plants was investigated in 187 plant introductions (PIs) of 38 wild species of tuber-bearing Solanum. These 2x, 4x, and 6x species are from Mexico, and Central and South America. The determination of 2n pollen-producing plants was conducted using acetocarmine glycerol. Plants with more than 1% large-size pollen were regarded as 2n pollen-producing plants. 2n pollen-producing plants were identified in the following species: 10 out of 12 Mexican 2x species, seven of nine South American 2x species, seven of seven Mexican and Central American 4x species, five of five South American 4x species, and five of five Mexican 6x species. The frequency of 2n pollen-producing plants varied among species at the same ploidy level, but the range of frequency, generally between 2 and 10% among species, was similar over different ploidy levels. The general occurrence of 2n pollen in both 2x and polyploid species, which are evolutionarily related, is evidence that the mode of polyploidization in tuber-bearing Solanums is sexual polyploidization. Furthermore, the frequencies of 2n pollen-producing plants in autogamous disomic polyploid species were not markably different from those of their related diploid species. It is thought that the frequent occurrence of 2n gametes with autogamy tends to disturb the fertility and consequently reduce fitness of polyploids. Thus, we propose that the breeding behavior of polyploids and the occurrence of 2n gametes may be genetically balanced in order to conserve high fitness in polyploid species in tuberbearing Solanum.Paper No. 3114 from the Laboratory of Genetics. Research supported by the College of Agriculture and Life Sciences; International Potato Center; USDA, SEA, CGRO 84-CRCR-1-1389; and Frito Lay, Inc.  相似文献   
54.
Bone morphogenetic protein 2 (BMP-2) has been known for decades as a strong osteoinductive factor and for clinical applications is combined solely with collagen as carrier material. The growing concerns regarding side effects and the importance of BMP-2 in several developmental and physiological processes have raised the need to improve the design of materials by controlling BMP-2 presentation. Inspired by the natural cell environment, new material surfaces have been engineered and tailored to provide both physical and chemical cues that regulate BMP-2 activity. Here we describe surfaces designed to present BMP-2 to cells in a spatially and temporally controlled manner. This is achieved by trapping BMP-2 using physicochemical interactions, either covalently grafted or combined with other extracellular matrix components. In the near future, we anticipate that material science and biology will integrate and further develop tools for in vitro studies and potentially bring some of them toward in vivo applications.  相似文献   
55.
56.
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen‐sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)‐mediated activation of Notch and repression of Wnt/β‐catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF‐mediated support for Notch signalling may decline while the β‐catenin‐directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.  相似文献   
57.
Pycnogenol® (PYC), a patented combination of bioflavonoids extracted from the bark of French maritime pine (Pinus maritima), scavenges free radicals and promotes cellular health. The protective capacity of PYC against ethanol toxicity of neurons has not previously been explored. The present study demonstrates that in postnatal day 9 (P9) rat cerebellar granule cells the antioxidants vitamin E (VE) and PYC (1) dose dependently block cell death following 400, 800, and 1600 mg/dL ethanol exposure (2) inhibit the ethanol‐induced activation of caspase‐3 in the same model system; and (3) reduce neuronal membrane disruption as assayed by phosphatidylserine translocation to the cell surface. These results suggest that both PYC and VE have the potential to act as therapeutic agents, antagonizing the induction of neuronal cell death by ethanol exposure. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 261–271, 2004  相似文献   
58.
59.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
60.
《Cell reports》2020,30(4):1027-1038.e4
  1. Download : Download high-res image (122KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号