首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1260篇
  免费   106篇
  国内免费   79篇
  2024年   4篇
  2023年   46篇
  2022年   54篇
  2021年   96篇
  2020年   56篇
  2019年   82篇
  2018年   58篇
  2017年   39篇
  2016年   42篇
  2015年   55篇
  2014年   75篇
  2013年   74篇
  2012年   55篇
  2011年   55篇
  2010年   36篇
  2009年   64篇
  2008年   56篇
  2007年   46篇
  2006年   35篇
  2005年   38篇
  2004年   39篇
  2003年   23篇
  2002年   29篇
  2001年   38篇
  2000年   26篇
  1999年   27篇
  1998年   16篇
  1997年   17篇
  1996年   17篇
  1995年   23篇
  1994年   7篇
  1993年   12篇
  1992年   15篇
  1991年   8篇
  1990年   8篇
  1989年   7篇
  1988年   6篇
  1987年   1篇
  1986年   9篇
  1985年   9篇
  1984年   10篇
  1983年   4篇
  1982年   8篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   1篇
  1976年   4篇
  1972年   1篇
排序方式: 共有1445条查询结果,搜索用时 15 毫秒
71.
Sorting objects and events into categories and concepts is an important cognitive prerequisite that spares an individual the learning of every object or situation encountered in its daily life. Accordingly, specific items are classified in general groups that allow fast responses to novel situations. The present study assessed whether bamboo sharks Chiloscyllium griseum and Malawi cichlids Pseudotropheus zebra can distinguish sets of stimuli (each stimulus consisting of two abstract, geometric objects) that meet two conceptual preconditions, i.e., (1) “sameness” versus “difference” and (2) a certain spatial arrangement of both objects. In two alternative forced choice experiments, individuals were first trained to choose two different, vertically arranged objects from two different but horizontally arranged ones. Pair discriminations were followed by extensive transfer test experiments. Transfer tests using stimuli consisting of (a) black and gray circles and (b) squares with novel geometric patterns provided conflicting information with respect to the learnt rule “choose two different, vertically arranged objects”, thereby investigating (1) the individuals’ ability to transfer previously gained knowledge to novel stimuli and (2) the abstract relational concept(s) or rule(s) applied to categorize these novel objects. Present results suggest that the level of processing and usage of both abstract concepts differed considerably between bamboo sharks and Malawi cichlids. Bamboo sharks seemed to combine both concepts—although not with equal but hierarchical prominence—pointing to advanced cognitive capabilities. Conversely, Malawi cichlids had difficulties in discriminating between symbols and failed to apply the acquired training knowledge on new sets of geometric and, in particular, gray-level transfer stimuli.  相似文献   
72.
The postulates of developmental instability–sexual selection hypothesis is intensely debated among evolutionary biologists, wherein despite a large amount of empirical data, evidence for or against it has been largely inconclusive. A key assumption of this hypothesis is that animals assess symmetry in potential mates as an indicator of genetic quality (developmental stability), and consequently use this information to discriminate against those with higher asymmetries while choosing mates. However, the perceptional basis that must underlie such discriminatory behavior (is symmetry a signal or is symmetry signaled) is not clearly defined. It is also argued that since asymmetry levels in natural populations are very low, the low signal‐to‐noise ratio would make accurate assessment of symmetry both difficult and costly. Rather than attempting to validate this hypothesis or even as to whether animals assess mate symmetry, this review simply aims to examine the plausibility that animals perceive symmetry (directly or indirectly) and consequently discriminate against asymmetric mates in response to perceived irregularities during courtship. For this, we review mate choice and courtship literature to identify potential sensory cues that might advertise asymmetry or lead to discrimination of asymmetric individuals. Although signaling associated with mate choice is commonly multimodal, previous studies on asymmetry have mainly focused on visual perception. In the light of a recent study (Vijendravarma et al., 2022, Proceedings of the National Academy of Sciences of the United States of America, 119, e2116136119), this review attempts to balance this bias by emphasizing on non‐visual perception of asymmetry. In conclusion, we discuss the methodological challenges associated with testing the role of multimodal cues in detecting mate asymmetry, and highlight the importance of considering ecological, behavioral, and evolutionary aspects of animals while interpreting empirical data that test such hypothesis.  相似文献   
73.
Although tropical coral reefs are one of the most spectrally complex habitats, there is relatively little known about colour vision of reef fish. In this study, we measured the spectral sensitivity of an endemic Hawaiian coral reef fish, Thalassoma duperrey (family Labridae), and assessed the possible role of visual sensitivity in mediating intraspecific communication. Electrophysiological recordings of compound action potentials from retinal ganglion cells were used to generate spectral sensitivity curves for specific wavelengths (380–620nm). We found at least 2 sensitivity peaks for the on response (max=460, 550nm). The off response lacked a short wavelength mechanism but a medium wavelength mechanism (max=545nm) and a longwave mechanism (max=570nm) were found. To quantify the visual stimulus provided by a conspecific individual, spectral reflectance from the colour pattern of T. duperrey was measured with a spectroradiometer. Luminance and spectral contrast were computed between colour patches of the pattern and between the patches and natural backgrounds (i.e., water and coral). Reflectance from the blue head and contrast from the blue, green and red patches matched the sensitivity maxima of T. duperrey, although this depended on the type of background. Our results indicate that T. duperrey should be able to visually detect the colour pattern of a conspecific fish and that T. duperrey's visual system is designed to enhance target detection in the coral reef habitat with matched and offset cone mechanisms.  相似文献   
74.
Waves have long been thought to be a fundamental mechanism for communicating information within a medium and are widely observed in biological systems. However, a quantitative analysis of biological waves is confounded by the variability and complexity of the response. This paper proposes a robust technique for extracting wave structure from experimental data by calculating "wave subspaces" from the KL decomposition of the data set. If a wave subspace contains a substantial portion of the data set energy during a particular time interval, one can deduce the structure of the wave and potentially isolate its information content. This paper uses the wave subspace technique to extract and compare wave structure in data from three different preparations of the turtle visual cortex. The paper demonstrates that wave subspace caricatures from the three cortical preparations have qualitative similarities. In the numerical model, where information about the underlying dynamics is available, wave subspace landmarks are related to activation and changes in behavior of other dynamic variables besides membrane potential.  相似文献   
75.
Visual cortical simple cells have been experimentally shown to reveal non-trivial spatio-temporal orientation tuning functions comprising different phases of specifically tuned enhanced and suppressed activity. A recently developed analytical method based on nonlinear neural field models suggests that such space-time responses should be approximately separable into a sum of temporally amplitude modulated Gaussian spatial components. In the present work, we investigate this possibility by means of numerical fits of sums of Gaussians to response functions observed in experiments and computer simulations. Because the theory relates each single component to a particular connectivity kernel between the underlying cell classes shaping the response, the relative contribution of feedforward and cortex-intrinsical excitatory and inhibitory feedback mechanisms to single cell tuning can be approached and quantified in experimental data.  相似文献   
76.
In visual operant conditioning ofDrosophila at the flight simulator, only motor output of flies—yaw torque—is recorded, which is involved in the conditioning process. The current study used a newly-designed data analysis method to study the torque distribution ofDrosophila. Modification of torque distribution represents the effects of operant conditioning on flies’ behavioral mode. Earlier works[10] showed that, when facing contradictory visual cues, flies could make choices based upon the relative weightiness of different cues, and it was demonstrated that mushroom bodies might play an important role in such choice behavior. The new “torque-position map” method was used to explore the CS-US associative learning and choice behavior inDrosophila from the aspect of its behavioral mode. Finally, this work also discussed various possible neural bases involved in visual associative learning, choice processing and modification processing of the behavioral mode in the visual operant conditioning ofDrosophila.  相似文献   
77.
Spontaneous cortical activity of single neurons is often either dismissed as noise, or is regarded as carrying no functional significance and hence is ignored. Our findings suggest that such concepts should be revised. We explored the coherent population activity of neuronal assemblies in primary sensory area in the absence of a sensory input. Recent advances in real-time optical imaging based on voltage-sensitive dyes (VSDI) have facilitated exploration of population activity and its intimate relationship to the activity of individual cortical neurons. It has been shown by in vivo intracellular recordings that the dye signal measures the sum of the membrane potential changes in all the neuronal elements in the imaged area, emphasizing subthreshold synaptic potentials and dendritic action potentials in neuronal arborizations originating from neurons in all cortical layers whose dendrites reach the superficial cortical layers. Thus, the VSDI has allowed us to image the rather illusive activity in neuronal dendrites that cannot be readily explored by single unit recordings. Surprisingly, we found that the amplitude of this type of ongoing subthreshold activity is of the same order of magnitude as evoked activity. We also found that this ongoing activity exhibited high synchronization over many millimeters of cortex. We then investigated the influence of ongoing activity on the evoked response, and showed that the two interact strongly. Furthermore, we found that cortical states that were previously associated only with evoked activity can actually be observed also in the absence of stimulation, for example, the cortical representation of a given orientation may appear without any visual input. This demonstration suggests that ongoing activity may also play a major role in other cortical function by providing a neuronal substrate for the dependence of sensory information processing on context, behavior, memory and other aspects of cognitive function.  相似文献   
78.
Molecular approaches to sugar beet improvement will benefit from an efficient transformation procedure that does not rely upon exploitation of selectable marker genes such as those which confer antibiotic or herbicide resistance upon the transgenic plants. The expression of the green fluorescent protein (GFP) signal has been investigated during a program of research that was designed to address the need to increase the speed and efficiency of selection of sugar beet transformants. It was envisaged that the GFP reporter could be used initially as a supplement to current selection regimes in order to help eliminate “escapes” and perhaps eventually as a replacement marker in order to avoid the public disquiet associated with antibiotic/herbicide-resistance genes in field-released crops. The sgfp-S65T gene has been modified to have a plant-compatible codon usage, and a serine to threonine mutation at position 65 for enhanced fluorescence under blue light. This gene, under the control of the CaMV 35S promoter, was introduced into sugar beet via Agrobacterium-mediated transformation. Early gene expression in cocultivated sugar beet cultures was signified by green fluorescence several days after cocultivation. Stably transformed calli, which showed green fluorescence at a range of densities, were obtained at frequencies of 3–11% after transferring the inoculated cultures to selection media. Cocultivated shoot explants or embryogenic calli were regularly monitored under the microscope with blue light when they were transferred to media without selective agents. Green fluorescent shoots were obtained at frequencies of 2–5%. It was concluded that the sgfp-S65T gene can be used as a vital marker for noninvasive screening of cells and shoots for transformation, and that it has potential for the development of selectable marker-free transgenic sugar beet.  相似文献   
79.
We conducted field and semi-field experiments to determine the most visually stimulating and acceptable version of a branch-mimicking trap (PVC cylinder topped with an inverted screen funnel) to capture adult plum curculios, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae) foraging within canopies of host trees. Cylinder traps (25 cm tall × 6 cm diam) coated with different colors of gloss or flat latex paint captured similar numbers of feral adults in field tests. Tall cylinder traps (50 cm tall × 6 cm diam) captured significantly more feral adults in field tests in 1999 than cylinder traps of lesser height and/or different diameter, and significantly more released adults arrived at traps with these dimensions compared to cylinder traps of lesser height in semi-field tests. In field and semi-field tests, respectively, significantly more adults were captured by and numerically more adults arrived at tall cylinder traps (50 cm tall × 6 cm diam) attached in an upright, standard position to a horizontal limb than attached at angles of 45°, 90°, 135°, or 180° to horizontal limbs.  相似文献   
80.
We present a biologically plausible model of binocular rivalry consisting of a network of Hodgkin-Huxley type neurons. Our model accounts for the experimentally and psychophysically observed phenomena: (1) it reproduces the distribution of dominance durations seen in both humans and primates, (2) it exhibits a lack of correlation between lengths of successive dominance durations, (3) variation of stimulus strength to one eye influences only the mean dominance duration of the contralateral eye, not the mean dominance duration of the ipsilateral eye, (4) increasing both stimuli strengths in parallel decreases the mean dominance durations. We have also derived a reduced population rate model from our spiking model from which explicit expressions for the dependence of the dominance durations on input strengths are analytically calculated. We also use this reduced model to derive an expression for the distribution of dominance durations seen within an individual.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号