首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1617篇
  免费   147篇
  国内免费   48篇
  2024年   2篇
  2023年   44篇
  2022年   66篇
  2021年   74篇
  2020年   58篇
  2019年   86篇
  2018年   124篇
  2017年   53篇
  2016年   48篇
  2015年   75篇
  2014年   133篇
  2013年   120篇
  2012年   74篇
  2011年   85篇
  2010年   63篇
  2009年   59篇
  2008年   55篇
  2007年   78篇
  2006年   65篇
  2005年   54篇
  2004年   47篇
  2003年   42篇
  2002年   36篇
  2001年   22篇
  2000年   24篇
  1999年   26篇
  1998年   12篇
  1997年   15篇
  1996年   20篇
  1995年   22篇
  1994年   14篇
  1993年   9篇
  1992年   12篇
  1991年   6篇
  1990年   7篇
  1989年   6篇
  1988年   8篇
  1987年   6篇
  1986年   10篇
  1985年   4篇
  1984年   11篇
  1983年   16篇
  1982年   7篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1812条查询结果,搜索用时 812 毫秒
191.
Recently, vaspin was identified as an adipokine with insulin-sensitizing effects, which is predominantly secreted from visceral adipose tissue in a rat model of type 2 diabetes. In this study, we examined whether vaspin mRNA expression is a marker of visceral obesity and correlates with anthropometric and metabolic parameters in paired samples of visceral and subcutaneous adipose tissue from 196 subjects with a wide range of obesity, body fat distribution, insulin sensitivity, and glucose tolerance. Vaspin mRNA expression was only detectable in 23% of the visceral and in 15% of the subcutaneous (SC) adipose tissue samples. Vaspin mRNA expression was not detectable in lean subjects (BMI<25) and was more frequently detected in patients with type 2 diabetes. No significant correlations were found between visceral vaspin gene expression and visceral fat area or SC vaspin expression. However, visceral vaspin expression significantly correlates with BMI, % body fat, and 2 h OGTT plasma glucose. Subcutaneous vaspin mRNA expression is significantly correlated with WHR, fasting plasma insulin concentration, and glucose infusion rate during steady state of an euglycemic-hyperinsulinemic clamp. Multivariate linear regression analysis revealed % body fat as strongest predictor of visceral vaspin and insulin sensitivity as strongest determinant of SC vaspin mRNA expression. In conclusion, our data indicate that induction of human vaspin mRNA expression in adipose tissue is regulated in a fat depot-specific manner and could be associated with parameters of obesity, insulin resistance, and glucose metabolism.  相似文献   
192.
After implantation, mouse embryos deficient for the activity of the transforming growth factor-beta member Nodal fail to form both the mesoderm and the definitive endoderm. They also fail to specify the anterior visceral endoderm, a specialized signaling center which has been shown to be required for the establishment of anterior identity in the epiblast. Our study reveals that Nodal-/- epiblast cells nevertheless express prematurely and ectopically molecular markers specific of anterior fate. Our analysis shows that neural specification occurs and regional identities characteristic of the forebrain are established precociously in the Nodal-/- mutant with a sequential progression equivalent to that of wild-type embryo. When explanted and cultured in vitro, Nodal-/- epiblast cells readily differentiate into neurons. Genes normally transcribed in organizer-derived tissues, such as Gsc and Foxa2, are also expressed in Nodal-/- epiblast. The analysis of Nodal-/-;Gsc-/- compound mutant embryos shows that Gsc activity plays no critical role in the acquisition of forebrain characters by Nodal-deficient cells. This study suggests that the initial steps of neural specification and forebrain development may take place well before gastrulation in the mouse and highlights a possible role for Nodal, at pregastrula stages, in the inhibition of anterior and neural fate determination.  相似文献   
193.
Aquaporins are channels that allow the movement of water across the cell membrane. Some members of the aquaporin family, the aquaglyceroporins, also allow the transport of glycerol, which is involved in the biosynthesis of triglycerides and the maintenance of fasting glucose levels. Aquaporin-7 (AQP7) is a glycerol channel mainly expressed in adipocytes. The deletion of AQP7 gene in mice leads to obesity and type 2 diabetes. AQP7 modulates adipocyte glycerol permeability thereby controlling triglyceride accumulation and fat cell size. Furthermore, the coordinated regulation of fat-specific AQP7 and liver-specific AQP9 may be key to determine glucose metabolism in insulin resistance.  相似文献   
194.
Summary Presented here are techniques developed to culture and analyze three-dimensional (3-D) adipose-like tissues as a means to bridge the gap between current liminations in culturing preadipocytes (PAs) and that of providing clinically relevant volumes of adipose tissue useful for soft tissue engineering stratgies in reconstructive surgery. Pilot studies were performed to determine techniques to visualize and analyze 3-D PA-like tissues as well as to develop successful strategies to culture 3T3-L1 cells in a high aspect ratio vessel rotating-wall bioreactor both with and without microcarriers. Next, a series of cultures were accessed to verify these techniques as well as to compare the culture of the cells with and without microcarriers. Finally, a perfused rotating-wall bioreactor was used to further investigate the nature of the aggregates or tissues being generated. The aggregates that formed in the perfused system were analyzed via histology and in vivo animal studies. PA-like tissues as large as 4–5 mm in diameter without microcarriers that were capable of lipid-loading and composed of viable cells were achieved. We have successfully demonstrated that large tissue aggregates can be grown in bioreactor culture systems.  相似文献   
195.
Observational studies have revealed associations between short leucocyte telomere length (LTL), a TL marker in somatic tissues and multiple Metabolic Syndrome (MetS) traits. Animal studies have supported these findings by showing that increased telomere attrition leads to adipose tissue dysfunction and insulin resistance. We investigated the associations between genetically instrumented LTL and MetS traits using Mendelian Randomisation (MR). Fifty‐two independent variants identified at FDR<0.05 from a genome‐wide association study (GWAS) including 78,592 Europeans and collectively accounting for 2.93% of LTL variance were selected as genetic instruments for LTL. Summary‐level data for MetS traits and for the MetS as a binary phenotype were obtained from the largest publicly available GWAS and two‐sample MR analyses were used to estimate the associations of LTL with these traits. The combined effect of the genetic instruments was modelled using inverse variance weighted regression and sensitivity analyses with MR‐Egger, weighted‐median and MR‐PRESSO were performed to test for and correct horizonal pleiotropy. Genetically instrumented longer LTL was associated with higher waist‐to‐hip ratio adjusted for body mass index (β = 0.045 SD, SE = 0.018, p = 0.01), raised systolic (β = 1.529 mmHg, SE = 0.332, p = 4x10−6) and diastolic (β = 0.633 mmHg, SE = 0.222, p = 0.004) blood pressure, and increased MetS risk (OR = 1.133, 95% CI 1.057–1.215). Consistent results were obtained in sensitivity analyses, which provided no evidence of unbalanced horizontal pleiotropy. Telomere shortening might not be a major driver of cellular senescence and dysfunction in human adipose tissue. Future experimental studies should examine the mechanistic bases for the links between longer LTL and increased upper‐body fat distribution and raised blood pressure.  相似文献   
196.
Adipose tissue dysfunction plays a key role in the development of the metabolic abnormalities characteristic of type 2 diabetes (T2DM) and participates actively in lipid metabolism. Adiponectin, found abundantly in circulation and a marker of adipose health, is decreased in obese persons with T2DM. We investigated whether the changes in adiponectin with an intensive lifestyle intervention (ILI) for weight loss could potentially mediate the increase in low HDL-cholesterol (HDL-C) with ILI. Adiponectin and its fractions were determined using an ELISA with selective protease treatment in 1,397 participants from Look AHEAD, a trial examining whether ILI will reduce cardiovascular events in overweight/obese subjects with T2DM when compared with a control arm, diabetes support and education (DSE). Multivariable regression and mediational analyses were performed for adiponectin and its high-molecular-weight (HMW) and non-HMW fractions. ILI increased baseline HDL-C by 9.7% and adiponectin by 11.9%; changes with DSE were 1.3% and 0.2%, respectively (P < 0.0001). In a model including changes in weight, fitness, triglycerides, and glucose control and that adjusted for demographics and medical history, adiponectin changes remained significantly associated with HDL-C change. Data supported the contribution of changes in both HMW- and non-HMW-adiponectin to the improvement in HDL-C with ILI  相似文献   
197.
Insulin resistance in adipose tissue increases the release of free fatty acids into the circulation, which likely contributes to impaired insulin action in liver and skeletal muscle associated with obesity. However, reliable assessment of adipose tissue insulin resistance requires performing a hyperinsulinemic-euglycemic clamp procedure in conjunction with a fatty acid tracer infusion to determine insulin-mediated suppression of lipolytic rate. We developed a simpler method for evaluating adipose tissue insulin resistance in vivo, determined as the product of palmitate rate of appearance into the bloodstream and plasma insulin concentration during basal conditions. We validated our Adipose Tissue Insulin Resistance Index (ATIRI) by comparison with an assessment of adipose tissue insulin resistance determined by using the hyperinsulinemic-euglycemic clamp procedure in conjunction with a palmitate tracer infusion in 47 obese nondiabetic subjects (body mass index: 40.1 ± 9.3 kg/m(2)). We found the ATIRI correlated closely with adipose tissue insulin resistance assessed during the clamp procedure (r =-0.854, P < 0.001). These results demonstrate that the ATIRI provides a reliable index of adipose tissue insulin resistance in obese subjects.  相似文献   
198.
Fat droplets (FDs) have important roles in cellular energy regulation. Isolating FDs from either cells or tissue continues to be important for studying these organelles. Here, we describe a procedure wherein whole homogenates of cultured cells or tissue are fractionated with a single centrifugation step in a standard microcentrifuge. This procedure reproducibly yields three fractions highly enriched in either FDs, soluble cellular components, or sedimentable organelles/membranes.  相似文献   
199.
The epicardial adipose tissue (EAT) is “hypertrophied” in the obese. Thiazolidinediones are anti-diabetic, hypolipidemic drugs and are selective agonists for the gamma isoform of peroxisome proliferator-activated receptor (PPARγ). We evaluated the short-term effects of the prototype rosiglitazone (RSG, 5 mg kg−1 day−1 for 4 days) on the expression of the genes and proteins (by real-time PCR and Western blot) involved in fatty acid (FA) metabolism in EAT of the obese fatty Zucker rat and compared the levels of expression with those in retroperitoneal adipose tissue (RAT). The glyceroneogenic flux leading to fatty acid re-esterification was assessed by the incorporation of 14C from [1-14C]-pyruvate into neutral lipids. RSG upregulated the mRNA for phosphoenolpyruvate carboxykinase, pyruvate dehydrogenase kinase 4, glycerol kinase, adipocyte lipid binding protein, adipose tissue triglyceride lipase and lipoprotein lipase in both RAT and EAT with a resulting increase in glyceroneogenesis that, however, was more pronounced in EAT than in RAT. Under RSG, fatty acid output was decreased in both tissues but unexpectedly less so in EAT than in RAT. RSG also induced the expression of the key genes for fatty acid oxidation [carnitinepalmitoyl transferase-1, medium chain acyl dehydrogenase and very long chain acyl dehydrogenase (VLCAD)]in EAT and RAT with a resulting significant rise of  the expression of VLCAD protein. In addition, the expression of the genes encoding proteins involved in mitochondrial processing and density PPARγ coactivator 1 alpha (PGC-1α), NADH dehydrogenase 1 and cytochrome oxidase (COX4) were increased by RSG treatment only in EAT, with a resulting significant up-regulation of PGC1-α and COX4 protein. This was accompanied by a rise in the expression of PR domain containing 16 and uncoupling protein 1, two brown adipose tissue-specific proteins. In conclusion, this study reveals that PPAR-γ agonist could induce a rapid browning of the EAT that probably contributes to the increase in lipid turnover.  相似文献   
200.
Ectopic fat accumulation has been linked to lipotoxic events, including the development of insulin resistance in skeletal muscle. Indeed, intramyocellular lipid storage is strongly associated with the development of type 2 diabetes. Research during the last two decades has provided evidence for a role of lipid intermediates like diacylglycerol and ceramide in the induction of lipid-induced insulin resistance. However, recently novel data has been gathered that suggest that the relation between lipid intermediates and insulin resistance is less straightforward than has been previously suggested, and that there are several routes towards lipid-induced insulin resistance. For example, research in this field has shifted towards imbalances in lipid metabolism and lipid droplet dynamics. Next to imbalances in key lipogenic and lipolytic proteins, lipid droplet coat proteins appear to be essential for proper intramyocellular lipid storage, turnover and protection against lipid-induced insulin resistance.Here, we discuss the current knowledge on lipid-induced insulin resistance in skeletal muscle with a focus on the evidence from human studies. Furthermore, we discuss the available data that provides supporting mechanistic information.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号