首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1617篇
  免费   147篇
  国内免费   48篇
  2024年   2篇
  2023年   44篇
  2022年   66篇
  2021年   74篇
  2020年   58篇
  2019年   86篇
  2018年   124篇
  2017年   53篇
  2016年   48篇
  2015年   75篇
  2014年   133篇
  2013年   120篇
  2012年   74篇
  2011年   85篇
  2010年   63篇
  2009年   59篇
  2008年   55篇
  2007年   78篇
  2006年   65篇
  2005年   54篇
  2004年   47篇
  2003年   42篇
  2002年   36篇
  2001年   22篇
  2000年   24篇
  1999年   26篇
  1998年   12篇
  1997年   15篇
  1996年   20篇
  1995年   22篇
  1994年   14篇
  1993年   9篇
  1992年   12篇
  1991年   6篇
  1990年   7篇
  1989年   6篇
  1988年   8篇
  1987年   6篇
  1986年   10篇
  1985年   4篇
  1984年   11篇
  1983年   16篇
  1982年   7篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1812条查询结果,搜索用时 15 毫秒
131.
Visceral leishmaniasis is a vector-borne disease caused by an obligate intracellular protozoan parasite Leishmania donovani. The molecular mechanism involved in internalization of Leishmania is poorly understood. The entry of Leishmania involves interaction with the plasma membrane of host cells. We have previously demonstrated the requirement of host membrane cholesterol in the binding and internalization of L. donovani into macrophages. In the present work, we explored the role of the host actin cytoskeleton in leishmanial infection. We observed a dose-dependent reduction in the attachment of Leishmania promastigotes to host macrophages upon destabilization of the actin cytoskeleton by cytochalasin D. This is accompanied by a concomitant reduction in the intracellular amastigote load. We utilized a recently developed high resolution microscopy-based method to quantitate cellular F-actin content upon treatment with cytochalasin D. A striking feature of our results is that binding of Leishmania promastigotes and intracellular amastigote load show close correlation with cellular F-actin level. Importantly, the binding of Escherichia coli remained invariant upon actin destabilization of host cells, thereby implying specific involvement of the actin cytoskeleton in Leishmania infection. To the best of our knowledge, these novel results constitute the first comprehensive demonstration on the specific role of the host actin cytoskeleton in Leishmania infection. Our results could be significant in developing future therapeutic strategies to tackle leishmaniasis.  相似文献   
132.
Risk alleles within a gene desert at the 9p21 locus constitute the most prevalent genetic determinant of cardiovascular disease. Previous research has demonstrated that 9p21 risk variants influence gene expression in vascular tissues, yet the biological mechanisms by which this would mediate atherosclerosis merits further investigation. To investigate possible influences of this locus on other tissues, we explored expression patterns of 9p21-regulated genes in a panel of multiple human tissues and found that the tumor suppressor CDKN2B was highly expressed in subcutaneous adipose tissue (SAT). CDKN2B expression was regulated by obesity status, and this effect was stronger in carriers of 9p21 risk alleles. Covariation between expression of CDKN2B and genes implemented in adipogenesis was consistent with an inhibitory effect of CDKN2B on SAT proliferation. Moreover, studies of postprandial triacylglycerol clearance indicated that CDKN2B is involved in down-regulation of SAT fatty acid trafficking. CDKN2B expression in SAT correlated with indicators of ectopic fat accumulation, including markers of hepatic steatosis. Among genes regulated by 9p21 risk variants, CDKN2B appears to play a significant role in the regulation of SAT expandability, which is a strong determinant of lipotoxicity and therefore might contribute to the development of atherosclerosis.  相似文献   
133.
Adult stem cells are becoming the best option for regenerative medicine because they have low tumourigenic potential and permit autologous transplantation, even without in vitro culture. Our objectives were to evaluate the effects of exogenous nucleosides on the proliferation of hASCs (human adipose‐derived stem cells), with or without co‐treatment with 5‐aza (5‐azacytidine), and to analyse the expression of lamin A/C during cardiomyocyte differentiation of these cells. We isolated hASCs from human lipoaspirates that were positive for mesenchymal stem cell markers. We found that 5‐aza induces a dose‐dependent inhibition of hASC proliferation [IC50 (inhibitory concentration 50): 5.37 μM], whereas exogenous nucleosides significantly promote the proliferation of hASCs and partially revert the antiproliferative effect of the drug. Multipotentiality of isolated hASCs was confirmed by adipogenic, osteogenic and cardiomyogenic induction. 5‐Aza‐induced cells expressed cardiac troponins I and T and myosin light chain 2, myocardial markers that were directly correlated with lamin A/C expression. Our results support the importance of the nucleoside supplementation of media to improve conditions for the expansion and maintenance of hASCs in culture. In addition, the quantification of lamin A/C expression appears to be a good marker for the characterization of cardiomyocyte differentiation of stem cells that has rarely been used.  相似文献   
134.
Human adipose‐derived stem cells (ASCs) may differentiate into cardiomyocytes and this provides a source of donor cells for tissue engineering. In this study, we evaluated cardiomyogenic differentiation protocols using a DNA demethylating agent 5‐azacytidine (5‐aza), a modified cardiomyogenic medium (MCM), a histone deacetylase inhibitor trichostatin A (TSA) and co‐culture with neonatal rat cardiomyocytes. 5‐aza treatment reduced both cardiac actin and TropT mRNA expression. Incubation in MCM only slightly increased gene expression (1.5‐ to 1.9‐fold) and the number of cells co‐expressing nkx2.5/sarcomeric α‐actin (27.2%versus 0.2% in control). TSA treatment increased cardiac actin mRNA expression 11‐fold after 1 week, which could be sustained for 2 weeks by culturing cells in cardiomyocyte culture medium. TSA‐treated cells also stained positively for cardiac myosin heavy chain, α‐actin, TropI and connexin43; however, none of these treatments produced beating cells. ASCs in non‐contact co‐culture showed no cardiac differentiation; however, ASCs co‐cultured in direct contact co‐culture exhibited a time‐dependent increase in cardiac actin mRNA expression (up to 33‐fold) between days 3 and 14. Immunocytochemistry revealed co‐expression of GATA4 and Nkx2.5, α‐actin, TropI and cardiac myosin heavy chain in CM‐DiI labelled ASCs. Most importantly, many of these cells showed spontaneous contractions accompanied by calcium transients in culture. Human ASC (hASC) showed synchronous Ca2+ transient and contraction synchronous with surrounding rat cardiomyocytes (106 beats/min.). Gap junctions also formed between them as observed by dye transfer. In conclusion, cell‐to‐cell interaction was identified as a key inducer for cardiomyogenic differentiation of hASCs. This method was optimized by co‐culture with contracting cardiomyocytes and provides a potential cardiac differentiation system to progress applications for cardiac cell therapy or tissue engineering.  相似文献   
135.
microRNAs (miRNAs) are non-coding small RNAs regulating gene expression, cell growth, and differentiation. Although several miRNAs have been implicated in cell growth and differentiation, it is barely understood their roles in adipocyte differentiation. In the present study, we reveal that miR-27a is involved in adipocyte differentiation by binding to the PPARγ 3′-UTR whose sequence motifs are highly conserved in mammals. During adipogenesis, the expression level of miR-27a was inversely correlated with that of adipogenic marker genes such as PPARγ and adiponectin. In white adipose tissue, miR-27a was more abundantly expressed in stromal vascular cell fraction than in mature adipocyte fraction. Ectopic expression of miR-27a in 3T3-L1 pre-adipocytes repressed adipocyte differentiation by reducing PPARγ expression. Interestingly, the level of miR-27a in mature adipocyte fraction of obese mice was down-regulated than that of lean mice. Together, these results suggest that miR-27a would suppress adipocyte differentiation through targeting PPARγ and thereby down-regulation of miR-27a might be associated with adipose tissue dysregulation in obesity.  相似文献   
136.
Genetic parameters pertaining to the same chemical characteristics of three porcine tissues, that is backfat (BF), perirenal fat (PF) and longissimus muscle (LM), were estimated in centrally tested Large White and Landrace pigs. Animals were fed ad libitum. They were slaughtered at an average BW of 99.6 kg, and samples of BF (both inner and outer layers) and LM were removed at the 13th to 14th rib level of the carcass on the day after slaughter. The data set included 2483 animals recorded for average daily gain (ADG; 35 to 100 kg), estimated carcass lean percentage (LEAN) and lean tissue growth rate (LTGR). Among these animals, around 950 pigs were recorded for lipid content (L%) and water content (W%) of BF and LM and for fatty acid composition (FAC) of BF, whereas FAC of LM was measured on 297 pigs and L%, W%, and FAC of PF on around 210 pigs. Heritabilities (h2) and genetic correlations (ra) were estimated using REML-animal model methodology. Estimates of h2 for L%, W% and FAC of BF, PF and LM were of moderate-to-high magnitude: for example 0.47 ± 0.09 for L% of LM, 0.59 ± 0.11 for W% of BF, 0.45 ± 0.08 for the ratio of polyunsaturated to saturated fatty acids (P/S) of BF, 0.61 ± 0.15 and 0.29 ± 0.10 for the coefficient of unsaturation of lipids (UNSAT, average number of double bonds of unsaturated fatty acids) of PF and LM, respectively. Genetic correlations of L% with P/S or UNSAT were strongly negative (from -0.4 to -0.9) in BF and LM, but not in PF. The 'between-tissue' genetic correlations for homologous compositional traits were far from being unity (e.g. ra = 0.57 ± 0.05 'between' BF and PF for UNSAT). Genetic relationships between ADG and tissue compositional traits were globally weak. By contrast, genetic correlations were moderate-to-high between carcass leanness and tissue compositional traits, especially those of fat depots: for example -0.66 ± 0.14 between LEAN and L% of BF, 0.50 ± 0.07 between LEAN and UNSAT of PF, -0.44 ± 0.08 between LEAN and L% of LM, and 0.27 ± 0.03 between LEAN and UNSAT of LM. On the basis of the parameter estimates found here, breeding for higher LTGR is expected to increase the ratio of water to lipids and the unsaturation degree of lipids in subcutaneous BF and, to a lesser extent, in PF. Tissue composition and FAC of LM would be less affected.  相似文献   
137.
The lean-to-fat ratio, that is, the relative masses of muscle and adipose tissue, is a criterion for the yield and quality of bovine carcasses and meat. This review describes the interactions between muscle and adipose tissue (AT) that may regulate the dynamic balance between the number and size of muscle v. adipose cells. Muscle and adipose tissue in cattle grow by an increase in the number of cells (hyperplasia), mainly during foetal life. The total number of muscle fibres is set by the end of the second trimester of gestation. By contrast, the number of adipocytes is never set. Number of adipocytes increases mainly before birth until 1 year of age, depending on the anatomical location of the adipose tissue. Hyperplasia concerns brown pre-adipocytes during foetal life and white pre-adipocytes from a few weeks after birth. A decrease in the number of secondary myofibres and an increase in adiposity in lambs born from mothers severely underfed during early pregnancy suggest a balance in the commitment of a common progenitor into the myogenic or adipogenic lineages, or a reciprocal regulation of the commitment of two distinct progenitors. The developmental origin of white adipocytes is a subject of debate. Molecular and histological data suggested a possible transdifferentiation of brown into white adipocytes, but this hypothesis has now been challenged by the characterization of distinct precursor cells for brown and white adipocytes in mice. Increased nutrient storage in fully differentiated muscle fibres and adipocytes, resulting in cell enlargement (hypertrophy), is thought to be the main mechanism, whereby muscle and fat masses increase in growing cattle. Competition or prioritization between adipose and muscle cells for the uptake and metabolism of nutrients is suggested, besides the successive waves of growth of muscle v. adipose tissue, by the inhibited or delayed adipose tissue growth in bovine genotypes exhibiting strong muscular development. This competition or prioritization occurs through cellular signalling pathways and the secretion of proteins by adipose tissue (adipokines) and muscle (myokines), putatively regulating their hypertrophy in a reciprocal manner. Further work on the mechanisms underlying cross-talk between brown or white adipocytes and muscle fibres will help to achieve better understanding as a prerequisite to improving the control of body growth and composition in cattle.  相似文献   
138.
棕色脂肪组织(BAT)的生理作用与白色脂肪显著不同,它以产热的形式释放能量而不是将能量以ATP的形式储存.线粒体是在能量代谢和维持细胞稳态中具有重要功能的细胞器.为了更好地了解棕色脂肪中的能量代谢过程,运用双向电泳及质谱相结合的技术,分离了大鼠白色和棕色脂肪线粒体,对其差异蛋白质谱进行了系统分析和鉴定.参与脂肪和氨基酸代谢、三羧酸循环及线粒体呼吸链的蛋白质在棕色脂肪线粒体中的表达明显高于白色脂肪线粒体,在寒冷诱导下这些蛋白质的表达进一步上调.此外,参与辅酶Q合成的一系列COQ 基因在棕色脂肪中经寒冷适应后表达明显上调.该研究表明,辅 酶Q合成的增高在非颤栗性产热中具有重要作用,为进一步了解棕色脂肪特异性的能量代谢提供了新的思路.  相似文献   
139.
By capturing time-lapse images of primary stromal-vascular cells (SVCs) derived from rat mesenteric adipose tissue, we revealed temporal and spatial variations of lipid droplets (LDs) in individual SVCs during adipocyte differentiation. Numerous small LDs (a few micrometers in diameter) appeared in the perinuclear region at an early stage of differentiation; subsequently, several LDs grew to more than 10 microm in diameter and occupied the cytoplasm. We have developed a method for the fluorescence staining of LDs in living adipocytes. Time-lapse observation of the stained cells at higher magnification showed that nascent LDs (several 100 nm in diameter) grew into small LDs while moving from lamellipodia to the perinuclear region. We also found that adipocytes are capable of division and that they evenly distribute the LDs between two daughter cells. Immunofluorescence observations of LD-associated proteins revealed that such cell divisions of SVCs occurred even after LDs were coated with perilipin, suggesting that the "final" cell division during adipocyte differentiation occurs considerably later than that characterized in 3T3-L1 cells. Our time-lapse observations have provided a detailed account of the morphological changes that SVCs undergo during adipocyte division and differentiation.  相似文献   
140.
Zhou X  Li D  Yin J  Ni J  Dong B  Zhang J  Du M 《Journal of lipid research》2007,48(8):1701-1709
Conjugated linoleic acid (CLA), a mixture of isomers of linoleic acid, has previously been shown to be able to decrease porcine subcutaneous (SC) adipose tissue levels while increasing the count of intramuscular (IM) adipose tissue in vivo. However, the underlying mechanisms through which it acts are poorly understood. The objective of this study was to investigate the different effects of CLA on adipogenesis in cultured SC adipose tissue and IM stromal vascular cells obtained from neonatal pigs. As shown here, trans-10, cis-12 CLA decreased the expression of adipocyte-specific genes as well as adipose precursor cell numbers and the accumulation of lipid in cultured SC adipose tissue stromal vascular cells. However, the cis-9, trans-11 CLA did not alter adipogenesis in SC cultures. On the other hand, both CLA isomers increased the expression of adipocyte-specific genes in IM cultures, together with the increasing accumulation of lipid and Oil Red O-stained cells. Collectively, these data show that CLA decreases SC adipose tissue but increases IM adipose tissue by different regulation of adipocyte-specific gene expression. These results suggest that adipogenesis in IM adipocytes differs from that in SC adipocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号