首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   43篇
  国内免费   40篇
  2024年   1篇
  2023年   21篇
  2022年   21篇
  2021年   25篇
  2020年   41篇
  2019年   61篇
  2018年   39篇
  2017年   46篇
  2016年   32篇
  2015年   14篇
  2014年   18篇
  2013年   77篇
  2012年   13篇
  2011年   30篇
  2010年   8篇
  2009年   17篇
  2008年   20篇
  2007年   17篇
  2006年   12篇
  2005年   25篇
  2004年   14篇
  2003年   10篇
  2002年   5篇
  2001年   5篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
71.
72.
73.
Visualization of scientific data is crucial not only for scientific discovery but also to communicate science and medicine to both experts and a general audience. Until recently, we have been limited to visualizing the three‐dimensional (3D) world of biology in 2 dimensions. Renderings of 3D cells are still traditionally displayed using two‐dimensional (2D) media, such as on a computer screen or paper. However, the advent of consumer grade virtual reality (VR) headsets such as Oculus Rift and HTC Vive means it is now possible to visualize and interact with scientific data in a 3D virtual world. In addition, new microscopic methods provide an unprecedented opportunity to obtain new 3D data sets. In this perspective article, we highlight how we have used cutting edge imaging techniques to build a 3D virtual model of a cell from serial block‐face scanning electron microscope (SBEM) imaging data. This model allows scientists, students and members of the public to explore and interact with a “real” cell. Early testing of this immersive environment indicates a significant improvement in students’ understanding of cellular processes and points to a new future of learning and public engagement. In addition, we speculate that VR can become a new tool for researchers studying cellular architecture and processes by populating VR models with molecular data.   相似文献   
74.
75.
Traditional structure-based virtual screening method to identify drug-like small molecules for BACE1 is so far unsuccessful. Location of BACE1, poor Blood Brain Barrier permeability and P-glycoprotein (Pgp) susceptibility of the inhibitors make it even more difficult. Fragment-based drug design method is suitable for efficient optimization of initial hit molecules for target like BACE1. We have developed a fragment-based virtual screening approach to identify/optimize the fragment molecules as a starting point. This method combines the shape, electrostatic, and pharmacophoric features of known fragment molecules, bound to protein conjugate crystal structure, and aims to identify both chemically and energetically feasible small fragment ligands that bind to BACE1 active site. The two top-ranked fragment hits were subjected for a 53 ns MD simulation. Principle component analysis and free energy landscape analysis reveal that the new ligands show the characteristic features of established BACE1 inhibitors. The potent method employed in this study may serve for the development of potential lead molecules for BACE1-directed Alzheimer’s disease therapeutics.  相似文献   
76.
Mycobacterium tuberculosis is the etiological agent of tuberculosis in humans and is responsible for more than two million deaths annually. M. tuberculosis isocitrate lyase (MtbICL) catalyzes the first step in the glyoxylate cycle, plays a pivotal role in the persistence of M. tuberculosis, which acts as a potential target for an anti-tubercular drug. To identify the potential anti-tuberculosis compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (n = 1,67,748) against the MtbICL structure. The ligands were docked against MtbICL in three sequential docking modes that resulted in 340 ligands having better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 27 compounds were found to fit well with re-docking studies. After refinement by molecular docking and drug-likeness analyses, three potential inhibitors (ZINC1306071, ZINC2111081, and ZINC2134917) were identified. These three ligands and the reference compounds were further subjected to molecular dynamics simulation and binding energy analyses to compare the dynamic structure of protein after ligand binding and the stability of the MtbICL and bound complexes. The binding free energy analyses were calculated to validate and capture the intermolecular interactions. The results suggested that the three compounds had a negative binding energy with ?96.462, ?143.549, and ?122.526 kJ mol?1 for compounds with IDs ZINC1306071, ZINC2111081, and ZINC2134917, respectively. These lead compounds displayed substantial pharmacological and structural properties to be drug candidates. We concluded that ZINC2111081 has a great potential to inhibit MtbICL and would add to the drug discovery process against tuberculosis.  相似文献   
77.
PPARα and PPARγ have been the most widely studied Peroxisome proliferator-activated receptor (PPAR) subtypes due to their important roles in regulating glucose, lipids, and cholesterol metabolism. By combining the lowering serum triglyceride levels benefit of PPARα agonists (such as fibrates) with the glycemic advantages of the PPARγ agonists (such as TZD), the dual PPAR agonists approach can both improve the metabolic effects and minimize the side effects caused by either agent alone, and hence, has become a promising strategy for designing effective drugs against type-2 diabetes. In this study, by means of virtual screening, ADMET prediction and molecular dynamics (MD) simulations techniques, one compound-ASN15761007 with high binding score, low toxicity were gained. It was observed by MD simulations that ASN15761007 not only possessed the same function as AZ242 did in activating PPARα and BRL did in activating PPARγ, but also had more favorable conformation for binding to the two receptors. Our results provided an approach to rapidly produce novel PPARα/γ dual agonists which might be a potential lead compound to develop against insulin resistance and hyperlipidemia.  相似文献   
78.
The impact of powdery (Uncinula necator) and downy mildew (Plasmopara viticola) on grapevine leaf gas exchange was analysed. Gas exchange measurements (assimilation A, transpiration E, stomatal conductance gs, intercellular concentration of CO2Ci) were made on three different leaf materials: (i) healthy tissue of diseased leaves, (ii) infected tissue of diseased leaves, (iii) healthy tissue of healthy leaves (control treatment). Using the same source of leaf tissue, photosynthetic pigment concentration (chlorophyll a, b) and fluorescence levels (minimal fluorescence F0, maximal fluorescence Fm and the optimal quantum yield [Fm ? F0]/Fm) were determined to explain the mechanism of action of the two diseases on leaf assimilation. The results indicated that powdery and downy mildew reduced the assimilation rates, not only through a reduction in green leaf area (visual lesions), but also through an influence on gas exchange of the remaining green leaf tissues, determining a ‘virtual lesion’. The ratios between virtual and visual lesions were higher in powdery mildewed leaves than in the downy mildewed leaves. The photosynthetic fluorescence level (Fv/Fm) was affected by neither of the two pathogens. The reduction in intercellular concentration of CO2 and photosynthetic pigment may explain the lower assimilation rates in the healthy tissues of powdery and downy mildewed leaves respectively.  相似文献   
79.
Neuraminidase (NA) is one of the most important targets to screen the drugs of anti-influenza virus A and B. After virtual screening approaches were applied to a compound database which possesses more than 10000 compound structures, 160 compounds were selected for bioactivity assay, then a High Throughput Screening (HTS) model established for influenza virus NA inhibitors was applied to detect these compounds. Finally, three compounds among them displayed higher inhibitory activities, the range of their IC50 was from 0.1 μmol/L to 3μmol/L. Their structural scaffolds are novel and different from those of NA inhibitors approved for influenza treatment, and will be useful for the design and research of new NA inhibitors. The resuit indicated that the combination of virtual screening with HTS was very significant to drug screening and drug discovery.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号