首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5321篇
  免费   246篇
  国内免费   455篇
  6022篇
  2024年   20篇
  2023年   107篇
  2022年   118篇
  2021年   160篇
  2020年   139篇
  2019年   158篇
  2018年   130篇
  2017年   100篇
  2016年   101篇
  2015年   149篇
  2014年   176篇
  2013年   294篇
  2012年   180篇
  2011年   181篇
  2010年   155篇
  2009年   220篇
  2008年   244篇
  2007年   296篇
  2006年   258篇
  2005年   291篇
  2004年   260篇
  2003年   207篇
  2002年   194篇
  2001年   165篇
  2000年   183篇
  1999年   136篇
  1998年   117篇
  1997年   105篇
  1996年   109篇
  1995年   105篇
  1994年   93篇
  1993年   89篇
  1992年   113篇
  1991年   86篇
  1990年   51篇
  1989年   56篇
  1988年   50篇
  1987年   67篇
  1986年   43篇
  1985年   57篇
  1984年   53篇
  1983年   22篇
  1982年   37篇
  1981年   27篇
  1980年   28篇
  1979年   31篇
  1978年   21篇
  1976年   13篇
  1974年   6篇
  1973年   8篇
排序方式: 共有6022条查询结果,搜索用时 15 毫秒
101.
A transformation method based on a dominant selectable marker (benomyl resistance) was developed for the rice blast fungus Magnaporthe grisea. The heterologous gene for -tubulin from Neurospora crassa (pBT3) was used to obtain benomyl-resistant M. grisea transformants at a frequency of 20 to 30/g of DNA. Control transformations carried out with a plasmid conferring hygromycin resistance or a derivative of pBT3 containing a repetitive DNA sequence, yielded the same frequency of transformation as that of pBT3. Molecular analysis of the transformants indicated multiple integration of the vector DNA.  相似文献   
102.
Reduction of vanadate to vanadyl by a strain of Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Three strains of Saccharomyces cerevisiae, SC-1, DBVPG 6173 and DBVPG 6037, were studied for vanadate resistance in complex Sabouraud medium since they did not thrive in different minimal media (yeast nitrogen base with and without amino acids). The strain SC-1 was resistant up to 16 mm of vanadate, whereas the strains DBVPG 6173 and DBVPG 6037 were inhibited by 8 mm and 4 mm vanadate, respectively. The vanadate resistance in strain SC-1 was constitutive and due to the reduction of this oxyanion to vanadyl, which was detected by EPR spectroscopy and visible spectroscopy. The transformation of vanadate to vanadyl took place during the exponential growth phase; 10 mm of vanadate was reduced to vanadyl outside the cells since the oxyanion was not detected in the cell biomass and only a negligible concentration of vanadyl (25 nmoles mg cells dry weight) was found in the biomass. The other two vanadate-sensitive yeast strains only accumulated vanadate and did not reduce the oxyanion to vanadyl.  相似文献   
103.
The HMV-II cells infected with influenza C virus were labeled with inorganic [32P]phosphate to identify phosphorylated proteins. Analysis by radioimmunoprecipitation with antiviral serum or monoclonal antibodies revealed that three major structural proteins of the virus, hemagglutinin-esterase (HE), nucleoprotein (NP), and matrix protein (M1) are all phosphorylated in both infected cells and virions. It was also observed that, in the presence of trypsin (10 μg/ml), the unphosphorylated form of the HE glycoprotein was cleaved efficiently whereas the phosphorylated form was not, raising the possibility that phosphorylation of HE may influence its susceptibility to degradation by proteolytic enzymes.  相似文献   
104.
105.
In the 1950s, only primary cell cultures were acceptable for the production of human biological products. This position was challenged in the late 1960s by human diploid cells (HDCs), and again in the 1980s by continuous cell lines (CCLs). The history of the HDC controversy is reviewed and lessons from that era that are relevant to the use of CCLs are pointed out. It became apparent in the early days of recombinant DNA technology in the 1980s that CCLs were needed for the development of some products. CCL acceptability therefore became more urgent, and several attempts were made to reach a consensus on regulatory issues. In 1986, the World Health Organization convened a Study Group to review the safety issues related to products derived from CCLs. The Study Group made a clear recommendation to pursue CCLs in product development because of the demonstrated capability of modern manufacturing processes to cope with contaminants. Issues such as acceptable levels of cellular DNA in products and the relationship of purity to safety are discussed in the context of the need for regulatory authorities, industry, and the general biomedical community to cooperate in addressing problems in a rational scientific manner.  相似文献   
106.
Cell competence forAgrobacterium-mediated DNA transfer inPisum sativum L.   总被引:1,自引:0,他引:1  
Distribution and properties of pea (Pisum sativum L.) cells, competent forAgrobacterium-mediated transformation were analysed byin situ histochemical detection of GUS (-glucuronidase) activity, 4 d after inoculation with engineeredAgrobacterium tumefaciens. The vector system consisted of the hypervirulent disarmed strain EHA101 and the binary plasmid pIBGUS, carrying an intron-containing, 35S-promotor drivengusA (oruidA) gene and two selectable marker genes. Cells competent for transformation were mainly restricted to the dedifferentiating cells neighbouring the vascular system of cotyledon and epicotyl explants. A standardized assay was developed, allowing determination and quantification of factors influencing number and distribution of competent cells. In etiolated seedlings, competence for transformation decreased with the distance of the epicotyl explant from the shoot apex and was specifically induced by the exogenous application of auxins. Transient expression ofgusA afterAgrobacterium-mediated DNA transfer was dramatically reduced upon application of cell-cycle and DNA replication inhibitors aphidicolin, colchicine and nalidixic acid. GUS expression after direct DNA transfer of double-stranded plasmid DNA (via PEG into protoplasts or via particle bombardment of epicotyl segments) was independent of cell-division/DNA replication.A GUS-positive mutant of EHA101 was constructed to allowin situ analysis of attaching bacteria within the plant tissue. Attachment and invasion was inhibited by well-developed cuticula but was restored after chloroform treatment of the tissue surface. Moreover, no correlation was found between distribution of attaching bacteria and the pattern of transformation-competent cells.  相似文献   
107.
For the development of anAgrobacterium-mediated transformation procedure of carnation (Dianthus caryophyllus L.), an intron-containing -glucuronidase (gus) gene was used to monitor the frequency of transformation events soon after infection of leaf explants. The efficiency of gene transfer was dependent on the carnation genotype, explant age and cocultivation time. Leaf explants from the youngest leaves showed the highest number of GUS-positive spots. After selection on a kanamycin-containing medium, transgenic shoots were generated among a relatively high number of untransformed shoots. The selection procedure was modified in such a way that the contact between explant and medium was more intense. This improved the selection and decreased the number of escapes. Kanamycin-resistant and GUS-positive plants were obtained from five cultivars after infection of leaf explants with the supervirulentAgrobacterium strain AGLO. A higher transformation frequency was observed with the binary vector pCGN7001 than with the p35SGUSint vector. Integration of the genes into the carnation genome was demonstrated by Southern blot hybridization. The number of incorporated T-DNA insertions varied between independent transformants from one to eight. Transformants were morphologically identical to untransformed plants. Segregation of the genes occurred in a Mendelian way.  相似文献   
108.
The development is described of a new procedure to genetically transform plant species using the male gametophyte as a natural transformation vector. Our system avoids the need for complicated regeneration procedures thus making it broadly applicable. Naked plasmid DNA encoding kanamycin resistance and GUS activity was introduced by particle gun bombardment into mature pollen grains ofNicotiana glutinosa. Bombarded pollen was used for pollinations and the resulting seeds were selected for kanamycin resistance. Two different kanamycin-resistant plants, designated VIP A and VIP B, were obtained in two independent experiments. In VIP A, TR2-driven GUS activity was observed in vascular bundles, trichomes and in a small number of pollen grains. DNA gel blot analysis indicated that the introduced DNA was integrated independently into the genome of VIP A and VIP B. It was shown that male and female gametophyte development and seed set were highly aberrant in both VIP A and VIP B and that the offspring of self- and cross-pollinations did not contain the transgenes. This might be caused by a recombination event during the integration of the naked DNA resulting in a deletion of part of the target chromosome. After meiosis such a deletion is lethal for the gametes. Our observation that the transgenes were detected in DNA isolated from sporophytic tissues but not in DNA from VIP A and VIP B pollen grains is in line with this explanation. Future experiments designed to increase the frequency of transformation and to transfer the transgenes to the offspring are discussed.  相似文献   
109.
棒状类细菌电击转化中多种条件对转化效率的影响   总被引:9,自引:0,他引:9  
以质粒PXZl0145电击转化不同棒状类细菌菌株,研究了影响电击转化效率的诸个因素,在含4%甘氨酸的培养基中生长至对数前期的菌体最适用于电击转化,当以同源DNA进行电击转化时,1.μgDNA中转化效率最高可达到8×1O6转化子,但用异源DNA时,转化效率要比前者低102~103倍。  相似文献   
110.
Summary Recent availability of stable and well characterized selectable markers and ability to combine alien genomes parasexually have contributed to the development of molecular biology in higher plants, including gene expression and genetic manipulation.Several types of biochemical mutants (resistant to inhibitory concentrations of aminoacid(s) or aminoacid analogs as well as deficient for enzyme activity) have recently been isolated and characterized biochemically and genetically. Among them, mutants with alterations in the nitrogen and aminoacid metabolism, or in the activity of alcohol dehydrogenases are being used in the development of more efficient techniques of gene transfer.The manipulation of whole genomes by sexual or somatic cell fusion offers new potential in this field, but refinement of transfer techniques is desirable. The new set of selectable markers obtained through advanced cellular technology, as well as our ability to regenerate plants from manipulated cell lines are expected to play a major role in cellular engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号