首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2482篇
  免费   233篇
  国内免费   105篇
  2024年   3篇
  2023年   61篇
  2022年   81篇
  2021年   103篇
  2020年   96篇
  2019年   160篇
  2018年   118篇
  2017年   78篇
  2016年   77篇
  2015年   79篇
  2014年   116篇
  2013年   135篇
  2012年   93篇
  2011年   103篇
  2010年   83篇
  2009年   109篇
  2008年   105篇
  2007年   106篇
  2006年   110篇
  2005年   91篇
  2004年   94篇
  2003年   62篇
  2002年   74篇
  2001年   42篇
  2000年   48篇
  1999年   37篇
  1998年   54篇
  1997年   46篇
  1996年   45篇
  1995年   39篇
  1994年   51篇
  1993年   18篇
  1992年   43篇
  1991年   22篇
  1990年   34篇
  1989年   28篇
  1988年   23篇
  1987年   22篇
  1986年   21篇
  1985年   23篇
  1984年   22篇
  1983年   10篇
  1982年   13篇
  1981年   10篇
  1980年   12篇
  1979年   5篇
  1977年   3篇
  1976年   3篇
  1972年   2篇
  1971年   2篇
排序方式: 共有2820条查询结果,搜索用时 156 毫秒
71.
The relationship between cerebrospinal fluid and plasma cholecystokinin (CCK) levels was investigated by simultaneous withdrawal of CSF and blood from anesthetized mongrel dogs and measurement of CCK immunoreactivity by radioimmunoassay. A significant correlation occurred between CSF and plasma levels of CCK. During a CCK IV infusion, a statistically significant inverse correlation was noted between CSF and plasma values, while no significant relationship was noted during a bombesin (BBS) IV infusion. When infusion data were analyzed together with the appropriate baseline data, polynomial analysis revealed significant biphasic relationships for both CCK and BBS infusion studies. Intraventricular infusion of CCK did not alter plasma levels. These data suggest the existence of a mechanism relating CSF to plasma CCK levels (a gut to brain axis) with possible modulation or suppression by BBS.  相似文献   
72.
In order to elucidate the regulation of the levels of free choline in the brain, we investigated the influence of chronic and acute choline administration on choline levels in blood, CSF, and brain of the rat and on net movements of choline into and out of the brain as calculated from the arteriovenous differences of choline across the brain. Dietary choline supplementation led to an increase in plasma choline levels of 50% and to an increase in the net release of choline from the brain as compared to a matched group of animals which were kept on a standard diet and exhibited identical arterial plasma levels. Moreover, the choline concentration in the CSF and brain tissue was doubled. In the same rats, the injection of 60 mg/kg choline chloride did not lead to an additional increase of the brain choline levels, whereas in control animals choline injection caused a significant increase; however, this increase in no case surpassed the levels caused by chronic choline supplementation. The net uptake of choline after acute choline administration was strongly reduced in the high-choline group (from 418 to 158 nmol/g). Both diet groups metabolized the bulk (greater than 96%) of newly taken up choline rapidly. The results indicate that choline supplementation markedly attenuates the rise of free choline in the brain that is observed after acute choline administration. The rapid metabolic choline clearance was not reduced by dietary choline load. We conclude that the brain is protected from excess choline by rapid metabolism, as well as by adaptive, diet-induced changes of the net uptake and release of choline.  相似文献   
73.
Uptake and Distribution of Iron and Transferrin in the Adult Rat Brain   总被引:4,自引:0,他引:4  
Brain uptake of iron-59 and iodine-125-labelled transferrin from blood in the adult rat has been investigated using graphical analysis to determine the blood-brain barrier permeability to these tracers in experiments that lasted between 5 min and 8 days. The blood-brain barrier permeability (K(in)) to 59Fe was 89 x 10(-5) ml/min/g compared to the value of 7 x 10(-5) ml/min/g for 125I-transferrin, which is similar to that of albumin, a plasma marker. The autoradiographic distribution of these tracers in brain was also studied to determine any regional variation in brain uptake after the tracers had been administered either systemically or applied in vitro. No regional uptake was seen for 125I-transferrin even after 24 h of circulation. In contrast, 59Fe showed selective regional uptake by the choroid plexus and extra-blood-brain barrier structures 4 h after administration. After 24 h of circulation, 59Fe distribution in brain was similar to the transferrin receptor distribution, as determined in vitro, but was unlike the distribution of nonhaem iron determined histochemically. The data suggest that brain iron uptake does not involve any significant transcytotic pathway of transferrin-bound iron into brain. It is proposed that the uptake of iron into brain involves the entry of iron-loaded transferrin to the cerebral capillaries, deposition of iron within the endothelial cells, followed by recycling of apotransferrin to the circulation. The deposited iron is then delivered to brain-derived transferrin for extracellular transport within the brain, and subsequently taken up via transferrin receptors on neurones and glia for usage or storage.  相似文献   
74.
The uptake of morphine was significantly reduced in most regions of the brains of conscious, unrestrained rats within 10 minutes after treatment with an analog of ACTH/MSH (4–9), ORG-2766. The effect was most obvious in regions with significant densities of enkephalin receptors, namely basal ganglia, hippocampus and cortex. The results explain, in part, how some fragments and analogs of ACTH/MSH may antagonize behavioral actions of morphine, even though some of these peptides lack significant opiate receptor binding properties. We believe that this effect of ORG-2766 is related to an action on the permeability characteristics of the brain microvasculature. The underlying mechanism is unknown.  相似文献   
75.
Abstract: Since protein synthesis in the developing brain may, under certain conditions, be limited by amino acid availability, the present studies were undertaken to characterize the kinetics of large neutral amino acid transport through the blood-brain barrier (BBB) of the newborn rabbit. The Km, Vmax, and KD of the transport of eight amino acids were determined by a nonlinear regression analysis of data obtained with the carotid injection technique. Compared with kinetic parameters observed for the adult rat, the Km, Vmax, and KD of amino acid transport were all two- to threefold higher in the newborn. Albumin was found to bind tryptophan actively in vitro , but had no inhibitory effect on tryptophan transport through the newborn BBB. Glutamine was transported through the BBB of the newborn at rates severalfold higher than are seen in the adult rat. However, glutamine transport was not inhibited by high concentrations of N -methylaminoisobutyric acid (NMAIB), a model amino acid that is specific for the alanine-preferring or A-system present in peripheral tissues. In conclusion, these studies show that the BBB neutral amino acid transport system of the newborn rabbit has a lower affinity and higher capacity than does the BBB of the adult rat. Under conditions of high plasma amino acids, the increased capacity of the newborn transport system allows for a higher rate of amino acid transport into brain than would occur via the lower capacity system present in the adult rat brain.  相似文献   
76.
Abstract: Transport and permeability properties of the blood-brain and blood-CSF barriers were determined by kinetic analysis of radioisotope uptake from the plasma into the CNS of the adult rat. Cerebral cortex and cerebellum uptake curves for 36Cl and 22Na were resolved into two components. The fast component (t½ 0.02–0.05 h, fractional volume 0.04–0.08) is comprised of the vascular compartment and a small perivascular space whereas the slow component (t½ 1.06–1.69 h, fractional volume 0.92–0.96) represents isotope movement across the blood-brain barrier into the brain extracellular and cellular compartments. Uptake curves of both 36Cl and 22Na into the CSF were also resolved into two components, a fast component (t½ 0.18 h, fractional volume 0.24) and a slow component (t½ 1.2 h, fractional volume 0.76). Evidence suggests that the fast component represents isotope movement across the blood-CSF barrier, i.e., the choroid plexuses, whereas the CSF slow component probably reflects isotope penetration primarily from the brain extracellular fluid into the CSF. The extracellular fluid volume of the cerebral cortex and cerebellum was estimated as ?13% from the initial slope of the curve of brain space versus CSF space curve for both 36Cl and 22Na. Like the choroid plexuses, the glial cell compartment of the brain appears to accumulate Cl from 2 to 6 times that predicted for passive distribution. The relative permeability of the blood-CSF and blood-brain barriers to 36Cl, 22Na, and [3H]mannitol was determined by calculating permeability surface-area products (PA). Analysis of the PA values for all three isotopes indicates that the effective permeability of the choroidal epithelium (blood/CSF barrier) is significantly greater than that of the capillary endothelium in the cerebral cortex and cerebellum (blood-brain barrier).  相似文献   
77.
Enzymes Related to Monoamine Transmitter Metabolism in Brain Microvessels   总被引:6,自引:6,他引:0  
The activities of tyrosine hydroxylase, aromatic L-aminoacid decarboxylase, monoamine oxidase, and catechol-O-methyltransferase were measured in microvessel (capillaries and venules), parenchymal arterioles, and pial vessels from rat brains, and the decarboxylase activity was compared in brain microvessels from rabbit, cat, dog, pig, cow, baboon, and man. Cranial sympathectomy was performed to estimate the neuronal contribution to the enzyme activities. All vascular regions had substantial activities of the various enzymes studied. The activity of aromatic L-aminoacid decarboxylase in cerebral microvessels was high in rat, dog, pig, cow, and man; intermediate in rabbit and cat; and low in baboon. In addition to this enzyme, cerebral microvessels also contained tyrosine hydroxylase and monoamine oxidase. Aromatic aminoacid decarboxylase and monoamine oxidase serve an enzymatic barrier function at the microvascular level, whereas the main function of tyrosine hydroxylase is probably to synthesize monoamines within nerve terminals that remain in close association with microvessels under the conditions used for preparation of the microvascular fraction. In larger intracerebral and pial vessels monoamine oxidase was present both in the wall itself and in perivascular sympathetic nerves; the remaining two enzymes had a primarily neuronal localization. The latter types of vessels also contained catechol-O-methyltransferase in their walls.  相似文献   
78.
During the aparasitaemic period following chemotherapy of all three strains of T. brucei infections in mice, successful transmission as shown by subsequent parasitaemia, was regularly achieved following the inoculation of homogenates of brain tissue into recipient mice. Transmission with blood obtained at the same time was consistently negative and in the case of T. brucei TREU 667, homogenates of other organs were non-infective. The implications of this central nervous system involvement are discussed with particular reference to its use as a model for relapsing infections after therapy in man.  相似文献   
79.
Summary Brain capillaries and their permeability to intravenously injected horseradish peroxidase, HRP, (MW: 40,000) were examined electron-microscopically in an attempt to find a structural explanation for the poorly developed blood-brain barrier in the hagfish, Myxine glutinosa. In particular, it was the aim of this study to examine the role of the numerous endothelial vesicles and tubules in the transport of this tracer between blood and brain. Many of the vesicles and tubules were found to be in continuity with the luminal or abluminal surfaces, but tubules generating channels through the endothelial cells were never observed. The cleft between adjacent endothelial cells was obliterated by punctate junctions. HRP, which was allowed to circulate for up to 35 min, was not found in the basal lamina or in the surrounding brain parenchyma. Few of the luminal vesicles and tubules were marked by the tracer. In the intercellular cleft HRP was stopped by the junctions. It is concluded that the hagfish like other vertebrates has a blood-brain barrier to HRP, and the numerous vesicles and tubules occurring in hagfish brain endothelium are not involved in the transendothelial transport of this macromolecule.  相似文献   
80.
Hybridization, natural or artificial, is considered disadvantageous for species biodiversity when it threatens the population integrity of endangered species. Frequently, studies investigating whether hybridization poses a legitimate risk to rare species are based on genetic data obtained in molecular biology laboratories. In this study, we used field research to approach the problem that hybridization could cause for the viability of a population of a rare species and to be able to propose the most appropriate initial conservation strategy. Specifically, using the model genus Antirrhinum, the reproductive barriers between the rare A. pulverulentum and its common congener A. litigiosum have been analysed under the reproductive isolation index (RI). A. pulverulentum had a high value of total RI, indicating that there are barriers to gene flow from A. litigiosum towards this species, and also had a high value for the intrinsic RI, reflecting a low inherent capacity for production of hybrid plants; in addition, the possibility of successful backcrosses between this species with hybrids produced from A. litigiosum ovules were low, given the high intrinsic RI of A. litigiosum. These data indicate the current existence of strong and permanent barriers to hybridization between the two species, suggesting that hybridization does not seem to be a serious problem for the conservation of A. pulverulentum in the studied population, nor for the near future. This study shows how the RI index can provide useful information for conservation purposes and proposes different management recommendations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号