首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2561篇
  免费   221篇
  国内免费   178篇
  2024年   6篇
  2023年   78篇
  2022年   118篇
  2021年   177篇
  2020年   175篇
  2019年   183篇
  2018年   172篇
  2017年   120篇
  2016年   109篇
  2015年   132篇
  2014年   167篇
  2013年   235篇
  2012年   129篇
  2011年   149篇
  2010年   90篇
  2009年   105篇
  2008年   113篇
  2007年   116篇
  2006年   104篇
  2005年   70篇
  2004年   66篇
  2003年   46篇
  2002年   42篇
  2001年   45篇
  2000年   21篇
  1999年   19篇
  1998年   23篇
  1997年   20篇
  1996年   16篇
  1995年   14篇
  1994年   10篇
  1993年   11篇
  1992年   7篇
  1991年   11篇
  1990年   2篇
  1989年   8篇
  1988年   10篇
  1987年   7篇
  1986年   7篇
  1985年   4篇
  1984年   1篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有2960条查询结果,搜索用时 31 毫秒
71.
72.
《Organogenesis》2013,9(1):62-68
The primary cilium is an antenna-like organelle that plays a vital role in organ generation and maintenance. It protrudes from the cell surface where it receives signals from the surrounding environment and relays them into the cell. These signals are then integrated to give the required outputs in terms of proliferation, differentiation, migration and polarization that ultimately lead to organ development and homeostasis. Defects in cilia function underlie a wide range of diverse but related human developmental or degenerative diseases. Collectively known as ciliopathies, these disorders present with varying severity and multiple organ involvement. The appreciation of the medical importance of the primary cilium has stimulated a huge effort into studies of the underlying cellular mechanisms. These in turn have revealed that ciliopathies result not only from defective assembly or organization of the primary cilium, but also from impaired ciliary signaling. This special edition of Organogenesis contains a set of review articles that highlight the role of the primary cilium in organ development and homeostasis, much of which has been learnt from studies of the associated human diseases. Here, we provide an introductory overview of our current understanding of the structure and function of the cilium, with a focus on the signaling pathways that are coordinated by primary cilia to ensure proper organ generation and maintenance.  相似文献   
73.
Calcium (Ca2+) and magnesium (Mg2+) ions have been shown to play an important role in regulating various neuronal functions. In the present review we focus on the emerging role of transient potential melastatin-7 (TRPM7) channel in not only regulating Ca2+ and Mg2+ homeostasis necessary for biological functions, but also how alterations in TRPM7 function/expression could induce neurodegeneration. Although eight TRPM channels have been identified, the channel properties, mode of activation, and physiological responses of various TRPM channels are quite distinct. Among the known 8 TRPM channels only TRPM6 and TRPM7 channels are highly permeable to both Ca2+ and Mg2+; however here we will only focus on TRPM7 as unlike TRPM6, TRPM7 channels are abundantly expressed in neuronal cells. Importantly, the discrepancy in TRPM7 channel function and expression leads to various neuronal diseases such as Alzheimer disease (AD) and Parkinson disease (PD). Further, it is emerging as a key factor in anoxic neuronal death and in other neurodegenerative disorders. Thus, by understanding the precise involvement of the TRPM7 channels in different neurodegenerative diseases and by understanding the factors that regulate TRPM7 channels, we could uncover new strategies in the future that could evolve as new drug therapeutic targets for effective treatment of these neurodegenerative diseases.  相似文献   
74.
Chronic kidney disease (CKD) is a global problem. Slowing CKD progression is a major health priority. Since CKD is characterized by complex derangements of homeostasis, integrative animal models are necessary to study development and progression of CKD. To study development of CKD and novel therapeutic interventions in CKD, we use the 5/6th nephrectomy ablation model, a well known experimental model of progressive renal disease, resembling several aspects of human CKD. The gross reduction in renal mass causes progressive glomerular and tubulo-interstitial injury, loss of remnant nephrons and development of systemic and glomerular hypertension. It is also associated with progressive intrarenal capillary loss, inflammation and glomerulosclerosis. Risk factors for CKD invariably impact on endothelial function. To mimic this, we combine removal of 5/6th of renal mass with nitric oxide (NO) depletion and a high salt diet. After arrival and acclimatization, animals receive a NO synthase inhibitor (NG-nitro-L-Arginine) (L-NNA) supplemented to drinking water (20 mg/L) for a period of 4 weeks, followed by right sided uninephrectomy. One week later, a subtotal nephrectomy (SNX) is performed on the left side. After SNX, animals are allowed to recover for two days followed by LNNA in drinking water (20 mg/L) for a further period of 4 weeks. A high salt diet (6%), supplemented in ground chow (see time line Figure 1), is continued throughout the experiment. Progression of renal failure is followed over time by measuring plasma urea, systolic blood pressure and proteinuria. By six weeks after SNX, renal failure has developed. Renal function is measured using ''gold standard'' inulin and para-amino hippuric acid (PAH) clearance technology. This model of CKD is characterized by a reduction in glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), hypertension (systolic blood pressure>150 mmHg), proteinuria (> 50 mg/24 hr) and mild uremia (>10 mM). Histological features include tubulo-interstitial damage reflected by inflammation, tubular atrophy and fibrosis and focal glomerulosclerosis leading to massive reduction of healthy glomeruli within the remnant population (<10%). Follow-up until 12 weeks after SNX shows further progression of CKD.  相似文献   
75.
《Autophagy》2013,9(11):1686-1687
The most common neurodegenerative diseases are characterized by the accumulation of misfolded proteins. Tauopathies, which include Alzheimer disease, progressive supranuclear palsy, corticobasal degeneration, Pick disease and cases of frontotemporal dementia and parkinsonism linked to chromosome 17, are characterized by the accumulation of hyperphosphorylated and filamentous MAPT/tau protein. The pathological mechanisms involved in MAPT protein accumulation are not well understood, but a possible impairment of protein degradation pathways has been suggested. We investigated the effects of autophagy stimulation on MAPT pathology in a model tauopathy, the human mutant P301S MAPT transgenic mouse line. In the brain of the trehalose-treated mutant mice, autophagy is activated and a reduced number of neurons containing MAPT inclusions, as well as a decreased amount of insoluble MAPT, are observed. The improvement of MAPT pathology is associated with increased nerve cell survival. Moreover, MAPT inclusions colocalize with SQSTM1/p62- and LC3-positive puncta, suggesting the colocalization of MAPT aggregates with autophagic vacuoles. Autophagy is not activated in the spinal cord of the human P301S MAPT transgenic mice and neuronal survival, as well as MAPT pathology, is unaffected. This study supports a role for autophagy stimulation in the degradation of MAPT aggregates and opens new perspectives for the investigation of autophagy as a pathological mechanism involved in neurodegenerative diseases.  相似文献   
76.
The brain ventricular system is a series of connected cavities, filled with cerebrospinal fluid (CSF), that forms within the vertebrate central nervous system (CNS). The hollow neural tube is a hallmark of the chordate CNS, and a closed neural tube is essential for normal development. Development and function of the ventricular system is examined, emphasizing three interdigitating components that form a functional system: ventricle walls, CSF fluid properties, and activity of CSF constituent factors. The cellular lining of the ventricle both can produce and is responsive to CSF. Fluid properties and conserved CSF components contribute to normal CNS development. Anomalies of the CSF/ventricular system serve as diagnostics and may cause CNS disorders, further highlighting their importance. This review focuses on the evolution and development of the brain ventricular system, associated function, and connected pathologies. It is geared as an introduction for scholars with little background in the field.  相似文献   
77.
78.
79.
Notch signaling is an evolutionarily conserved signaling pathway and is essential for cell-fate specification in metazoans. Dysregulation of Notch signaling results in various human diseases, including cardiovascular defects and cancer. In 2000, Fringe, a known regulator of Notch signaling, was discovered as a Notch-modifying glycosyltransferase. Since then, glycosylation—a post-translational modification involving literal sugars—on the Notch extracellular domain has been noted as a critical mechanism for the regulation of Notch signaling. Additionally, the presence of diverse O-glycans decorating Notch receptors has been revealed in the extracellular domain epidermal growth factor-like (EGF) repeats. Here, we concisely summarize the recent studies in the human diseases associated with aberrant Notch glycosylation.  相似文献   
80.
Prolonged survival of a typical postmitotic neuron hinges on a balance between multiple processes, among these are a sustenance of ATP production and protection against reactive oxygen species. In neuropathological conditions, mitochondrial defects often lead to both a drop in ATP levels, as well as increase reactive oxygen species production from inefficient electron transport processes and NADPH-oxidases activities. The former often resulted in the phenomenon of compensatory aerobic glycolysis. The latter stretches the capacity of the cell's redox buffering capacity, and may lead to damages of key enzymes involved in energy metabolism. Several recent reports have indicated that enhancing glucose availability and uptake, as well as increasing glycolytic flux via pharmacological or genetic manipulation of glycolytic enzymes, could be protective in animal models of several major neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Activation of canonical Wnt signaling, which improves disease symptoms in mouse models of Alzheimer's disease also appears to work via an elevation of glycolytic enzymes and enhance glucose metabolism. Here, I discuss these findings and the possible underlying mechanisms of how an increase in glucose uptake and glycolysis could be neuroprotective. Increased glycolytic production of ATP would help alleviate energy deficiency, and ATP's hydrotropic effect may enhance solubility and clearance of toxic aggregates prevalent in many neurodegenerative diseases. Furthermore, channeling of glucose into the Pentose Phosphate Pathway would increase the redox buffering capacity of the cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号