首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   4篇
  国内免费   3篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2014年   4篇
  2013年   9篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   7篇
  2006年   3篇
  2005年   6篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有78条查询结果,搜索用时 140 毫秒
61.
李方方  李文庆  荆清 《遗传》2013,35(4):459-467
血管发育包括血管发生和血管生成两个阶段。近年研究表明, G蛋白偶联受体广泛参与调控成血管细胞的分化、迁移和接合, 尖端细胞和柄细胞命运决定, 内皮细胞的增殖、迁移和管腔形成等多个过程。文章以血管发育中的这些关键事件为主线, 总结了G蛋白偶联受体家族成员特别是视紫红质类和卷曲类受体在调节血管发育方面的最新研究进展。文章着重介绍了斑马鱼作为模式生物在血管发育生物学研究中的独特优势, 并展望了利用斑马鱼深入开展G蛋白偶联受体相关研究的广阔前景。  相似文献   
62.
《Developmental cell》2022,57(6):767-782.e6
  1. Download : Download high-res image (146KB)
  2. Download : Download full-size image
  相似文献   
63.
Polyunsaturated fatty acids (PUFAs) and their metabolites may influence cell fate regulation. Herein, we investigated the effects of linoleic acid (LA) as ω-6 PUFA, eicosapentaenoic acid (EPA) as ω-3 PUFA and palmitic acid (PA) on vasculogenesis of embryonic stem (ES) cells. LA and EPA increased vascular structure formation and protein expression of the endothelial-specific markers fetal liver kinase-1, CD31 as well as VE-cadherin, whereas PA was without effect. LA and EPA increased reactive oxygen species (ROS) and nitric oxide (NO), activated endothelial NO synthase (eNOS) and raised intracellular calcium. The calcium response was inhibited by the intracellular calcium chelator BAPTA, sulfo-N-succinimidyl oleate which is an antagonist of CD36, the scavenger receptor for fatty acid uptake as well as by a CD36 blocking antibody. Prevention of ROS generation by radical scavengers or the NADPH oxidase inhibitor VAS2870 and inhibition of eNOS by L-NAME blunted vasculogenesis. PUFAs stimulated AMP activated protein kinase-α (AMPK-α) as well as peroxisome proliferator-activated receptor-α (PPAR-α). AMPK activation was abolished by calcium chelation as well as inhibition of ROS and NO generation. Moreover, PUFA-induced vasculogenesis was blunted by the PPAR-α inhibitor GW6471. In conclusion, ω-3 and ω-6 PUFAs stimulate vascular differentiation of ES cells via mechanisms involving calcium, ROS and NO, which regulate function of the energy sensors AMPK and PPAR-α and determine the metabolic signature of vascular cell differentiation.  相似文献   
64.
Independent mouse knockouts of Etv2 and Flk1 are embryonic lethal and lack hematopoietic and endothelial lineages. We previously reported that Flk1 activates Etv2 in the initiation of hematopoiesis and vasculogenesis. However, Flk1 and its ligand VEGF are expressed throughout development, from E7.0 to adulthood, whereas Etv2 is expressed only transiently during embryogenesis. These observations suggest a complex regulatory interaction between Flk1 and Etv2. To further examine the Flk1 and Etv2 regulatory interaction, we transduced Etv2 and Flk1 mutant ES cells with viral integrants that inducibly overexpress Flk1 or Etv2. We demonstrated that forced expression of Etv2 rescued the hematopoietic and endothelial potential of differentiating Flk1 and Etv2 mutant cells. We further discovered that forced expression of Flk1 can rescue that of the Flk1, but not Etv2 mutant cells. Therefore, we conclude that the requirement for Flk1 can be bypassed by expressing Etv2, supporting the notion that disruption of Etv2 expression is responsible for the early phenotypes of the Etv2 and Flk1 mutant embryos. genesis 51:471–480.© 2013 Wiley Periodicals, Inc.  相似文献   
65.
Acute ischaemia causes a significant loss of blood vessels leading to deterioration of organ function. Multiple ischaemic conditions are associated with up‐regulation of activin A, but its effect on endothelial cells (EC) in the context of hypoxia is understudied. This study evaluated the role of activin A in vasculogenesis in hypoxia. An in vitro vasculogenesis model, in which EC were cocultured with adipose stromal cells (ASC), was used. Incubation of cocultures at 0.5% oxygen led to decrease in EC survival and vessel density. Hypoxia up‐regulated inhibin BA (monomer of activin A) mRNA by 4.5‐fold and activin A accumulation in EC‐conditioned media by 10‐fold, but down‐regulated activin A inhibitor follistatin by twofold. Inhibin BA expression was also increased in human EC injected into ischaemic mouse muscles. Activin A secretion was positively modulated by hypoxia mimetics dimethyloxalylglycine and desferrioxamine. Silencing HIF1α or HIF2α expression decreased activin A secretion in EC exposed to hypoxia. Introduction of activin A to cocultures decreased EC number and vascular density by 40%; conversely, blockade of activin A expression in EC or its activity improved vasculogenesis in hypoxia. Activin A affected EC survival directly and by modulating ASC paracrine activity leading to diminished ability of the ASC secretome to support EC survival and vasculogenesis. In conclusion, hypoxia up‐regulates EC secretion of activin A, which, by affecting both EC and adjacent mesenchymal cells, creates a micro‐environment unfavourable for vasculogenesis. This finding suggests that blockade of activin A signalling in ischaemic tissue may improve preservation of the affected tissue.  相似文献   
66.
The fertilized egg of the mammal gives rise to the embryo and its extraembryonic structures, all of which develop in intimate relation with each other. Yet, whilst the past several decades have witnessed a vast number of studies on the embryonic component of the conceptus, study of the extraembryonic tissues and their relation to the fetus have been largely ignored. The allantois, precursor tissue of the mature umbilical cord, is a universal feature of all placental mammals that establishes the vital vascular bridge between the fetus and its mother. The allantois differentiates into the umbilical blood vessels, which become secured onto the chorionic component of the placenta at one end and onto the fetus at the other. In this way, fetal blood is channeled through the umbilical cord for exchange with the mother. Despite the importance of this vascular bridge, little is known about how it is made. The aim of this review is to address current understanding of the biology of the allantois in the mouse and genetic control of its features and functions, and to highlight new paradigms concerning the developmental relationship between the fetus and its umbilical cord.  相似文献   
67.
Experiments were performed on the chorio-allantoic membrane (CAM) of the chick to evaluate the effects of bombesin (BN) on vascular neoformation. In morphometrical assays, 10(-13)-10(-4) M BN promoted dose-dependent vascular development. Newly formed vessels converged toward the BN release site in a spoked wheel arrangement, suggesting a diffusion gradient mechanism. Structural and ultrastructural analysis of CAM specimens collected near the BN release site showed that both vasculogenetic and angiogenetic processes cooperated in vascular neoformation that involved committed cells from the mesenchyme (angioblasts) as well as endothelial cells. No pattern of vascular development was detected away from the BN release site. Findings from the present study emphasize the role of BN in vascular net development of respiratory organs.  相似文献   
68.
Exposure to ethanol during human embryonic period has severe teratogenic effects on the cardiovascular system. In our study, we demonstrated that ethanol of gradient concentrations can interfere with the establishment of circulatory system in embryonic zebrafish. The effective concentration to cause 50% malformations (EC50) was 182.5 mmol/L. The ethanol pulse exposure experiment displayed that dome stage during embryogenesis is the sensitive time window to ethanol. It is found that 400 mmol/L ethanol pulse exposure can induce circulatory defects in 43% treated embryos. We ruled out the possibility that ethanol can interfere with the process of hematopoiesis in zebrafish. By employing in situ hybridization with endothelial biomarker (Flk-1), we revealed that ethanol disrupts the establishment of trunk axial vasculature, but has no effect on cranial vessels. Combined with the results of semi-thin histological sections, the in situ hybridization experiments with arterial and venous biomarkers (ephrinB2, ephB4) suggested that ethanol mainly interrupts the development of dorsal aorta while has little effect on axial vein. Further study indicated the negative influence of ethanol on the development of hypochord in zebrafish. The consequent lack of vasculogenic factors including Radar and Ang- 1 partly explains the defects in formation and integrity of dorsal aorta. These results provide important clues to the study of adverse effects of ethanol on the cardiovascular development in human fetus.  相似文献   
69.
The Eph receptor tyrosine kinases and their membrane-tethered ephrin ligands provide critical guidance cues at points of cell-to-cell contact. It has recently been reported that the ephrin-B2 ligand is a molecular marker for the arterial endothelium at the earliest stages of embryonic angiogenesis, while its receptor EphB4 reciprocally marks the venous endothelium. These findings suggested that ephrin-B2 and EphB4 are involved in establishing arterial versus venous identity and perhaps in anastamosing arterial and venous vessels at their junctions. By using a genetically engineered mouse in which the lacZ coding region substitutes and reports for the ephrin-B2 coding region, we demonstrate that ephrin-B2 expression continues to selectively mark arteries during later embryonic development as well as in the adult. However, as development proceeds, we find that ephrin-B2 expression progressively extends from the arterial endothelium to surrounding smooth muscle cells and to pericytes, suggesting that ephrin-B2 may play an important role during formation of the arterial muscle wall. Furthermore, although ephrin-B2 expression patterns vary in different vascular beds, it can extend into capillaries about midway between terminal arterioles and postcapillary venules, challenging the classical conception that capillaries have neither arterial nor venous identity. In adult settings of angiogenesis, as in tumors or in the female reproductive system, the endothelium of a subset of new vessels strongly expresses ephrin-B2, once again contrary to earlier views that such new vessels lack arterial/venous characteristics and derive from postcapillary venules. While earlier studies had focused on a role for ephrin-B2 during the earliest embryonic stages of arterial/venous determination, our current findings using ephrin-B2 as an arterial marker in the adult challenge prevailing views of the arterial/venous identity of quiescent as well as remodeling adult microvessels and also highlight a possible role for ephrin-B2 in the formation of the arterial muscle wall.  相似文献   
70.
Longstanding views of new blood vessel formation via angiogenesis, vasculogenesis, and arteriogenesis have been recently reviewed1. The presence of circulating endothelial progenitor cells (EPCs) were first identified in adult human peripheral blood by Asahara et al. in 1997 2 bringing an infusion of new hypotheses and strategies for vascular regeneration and repair. EPCs are rare but normal components of circulating blood that home to sites of blood vessel formation or vascular remodeling, and facilitate either postnatal vasculogenesis, angiogenesis, or arteriogenesis largely via paracrine stimulation of existing vessel wall derived cells3. No specific marker to identify an EPC has been identified, and at present the state of the field is to understand that numerous cell types including proangiogenic hematopoietic stem and progenitor cells, circulating angiogenic cells, Tie2+ monocytes, myeloid progenitor cells, tumor associated macrophages, and M2 activated macrophages participate in stimulating the angiogenic process in a variety of preclinical animal model systems and in human subjects in numerous disease states4, 5. Endothelial colony forming cells (ECFCs) are rare circulating viable endothelial cells characterized by robust clonal proliferative potential, secondary and tertiary colony forming ability upon replating, and ability to form intrinsic in vivo vessels upon transplantation into immunodeficient mice6-8. While ECFCs have been successfully isolated from the peripheral blood of healthy adult subjects, umbilical cord blood (CB) of healthy newborn infants, and vessel wall of numerous human arterial and venous vessels 6-9, CB possesses the highest frequency of ECFCs7 that display the most robust clonal proliferative potential and form durable and functional blood vessels in vivo8, 10-13. While the derivation of ECFC from adult peripheral blood has been presented14, 15, here we describe the methodologies for the derivation, cloning, expansion, and in vitro as well as in vivo characterization of ECFCs from the human umbilical CB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号