首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2785篇
  免费   251篇
  国内免费   121篇
  3157篇
  2024年   7篇
  2023年   63篇
  2022年   70篇
  2021年   104篇
  2020年   111篇
  2019年   189篇
  2018年   134篇
  2017年   96篇
  2016年   96篇
  2015年   91篇
  2014年   218篇
  2013年   220篇
  2012年   135篇
  2011年   173篇
  2010年   109篇
  2009年   103篇
  2008年   109篇
  2007年   139篇
  2006年   114篇
  2005年   103篇
  2004年   63篇
  2003年   73篇
  2002年   88篇
  2001年   77篇
  2000年   76篇
  1999年   47篇
  1998年   47篇
  1997年   39篇
  1996年   38篇
  1995年   21篇
  1994年   22篇
  1993年   29篇
  1992年   22篇
  1991年   26篇
  1990年   14篇
  1989年   16篇
  1988年   9篇
  1987年   12篇
  1986年   13篇
  1985年   9篇
  1984年   11篇
  1983年   3篇
  1982年   1篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1972年   1篇
排序方式: 共有3157条查询结果,搜索用时 15 毫秒
941.
942.

Background

Pulmonary arterial hypertension (PAH) is thought to be driven by dysfunction of pulmonary vascular microendothelial cells (PMVEC). Most hereditary PAH is associated with BMPR2 mutations. However, the physiologic and molecular consequences of expression of BMPR2 mutations in PMVEC are unknown.

Methods

In vivo experiments were performed on adult mice with conditional endothelial-specific expression of the truncation mutation Bmpr2delx4+, with age-matched transactivator-only mice as controls. Phenotype was assessed by RVSP, counts of muscularized vessels and proliferating cells, and staining for thromboses, inflammatory cells, and apoptotic cells. The effects of BMPR2 knockdown in PMVEC by siRNA on rates of apoptosis were assessed. Affymetrix expression arrays were performed on PMVEC isolated and cultured from triple transgenic mice carrying the immortomouse gene, a transactivator, and either control, Bmpr2delx4+ or Bmpr2R899X mutation.

Results

Transgenic mice showed increased RVSP and corresponding muscularization of small vessels, with histologic alterations including thrombosis, increased inflammatory cells, increased proliferating cells, and a moderate increase in apoptotic cells. Expression arrays showed alterations in specific pathways consistent with the histologic changes. Bmpr2delx4+ and Bmpr2R899X mutations resulted in very similar alterations in proliferation, apoptosis, metabolism, and adhesion; Bmpr2delx4+ cells showed upregulation of platelet adhesion genes and cytokines not seen in Bmpr2R899X PMVEC. Bmpr2 mutation in PMVEC does not cause a loss of differentiation markers as was seen with Bmpr2 mutation in smooth muscle cells.

Conclusions

Bmpr2 mutation in PMVEC in vivo may drive PAH through multiple, potentially independent, downstream mechanisms, including proliferation, apoptosis, inflammation, and thrombosis.  相似文献   
943.
944.
Notch信号通路是进化中高度保守的信号转导通路,其调控细胞增殖、分化和凋亡的功能涉及几乎所有组织和器官。血管损伤后,Notch信号通路分子表达改变,引起内皮细胞(endothelial cell,EC)和血管平滑肌细胞(vascular smooth muscle cell,VSMC)表型改变,其增殖、迁移、抗凋亡等能力也随之变化,从而参与血管的损伤修复。Notch信号通路能够促进EC和VSMC增殖以及VSMC迁移至内膜,并提高其存活能力,凶此能够促进新生内膜的形成。  相似文献   
945.
946.
The circle of Willis (cW) is a major arterial collateral structure interconnecting hemispheric circulation within the brain, and in humans, anatomical variation of the cW is linked to stroke risk. Our prior studies on adult mice deficient in vascular smooth muscle cell (vSMC) Notch signaling revealed altered cerebroarterial maturation and patterning, including an anatomically incompetent cW similar to human variants. However, a developmental dependency on Notch signaling for cW formation in this model remained uncharacterized. Through temporospatial embryonic analyses, we now demonstrate that cW assembly is a pre-natal process highly sensitive to vSMC Notch signals, whose absence results in delayed nascent vascular plexus formation and under-development of the cW including the key anterior communicating artery (AComA) interconnecting anterior forebrain circulation. Mutant embryos additionally feature reduced vSMC coverage, non-uniform calibers and asymmetric branching at bifurcations of the major proximal cerebral arteries. At the cellular level, a notable reduction in vascular endothelial cell proliferation exists in the region of AComA assembly despite the presence of Vegfa. Furthermore, Notch signaling-deficient vSMCs in developing cerebral vessels feature reduced Pdgfrβ and Jagged1 levels and impaired proliferation. These collective findings in the embryonic brain support studies in adult animals demonstrating a reliance on intact vSMC Notch signaling for optimal neovascular responses to angiogenic stimuli. Importantly, the new data provide unique insights into the native formation of the cW and underscore a pioneering developmental role for vSMC Notch signaling in regulating temporospatial assembly of the clinically relevant cW.  相似文献   
947.
948.
Vascular endothelial growth factor A (VEGFA) is among the most-significant stimulators of angiogenesis. Its effect on cardiovascular diseases and on the variation of related risk factors such as lipid parameters is considered important, although as yet unclear. Recently, we identified four common variants (rs6921438, rs4416670, rs6993770, and rs10738760) that explain up to 50% of the heritability of plasma VEGFA levels. In the present study, we aimed at assessing the contribution of these variants to the variation of blood lipid levels (including apoE, triglycerides, total cholesterol, low- and high-density lipoprotein cholesterol levels (LDL-C and HDL-C)] in healthy subjects. The effect of these single-nucleotide polymorphisms (SNPs) on lipid levels was assessed using linear regression in discovery and replication samples (n = 1,006 and n = 1,145; respectively), followed by a meta-analysis. Their gene×gene and gene×environment interactions were also assessed. SNP rs6921438 was associated with HDL-C (β = −0.08 mmol/l, Poverall = 1.2 × 10−7) and LDL-C (β = 0.13 mmol/l, Poverall = 1.5 × 10−4). We also identified a significant association between the interaction rs4416670×hypertension and apoE variation (Poverall = 1.7 × 10−5). Therefore, our present study shows a common genetic regulation between VEGFA and cholesterol homeostasis molecules. The SNP rs6921438 is in linkage disequilibrium with variants located in an enhancer- and promoter-associated histone mark region and could have a regulatory effect in the expression of surrounding genes, including VEGFA.  相似文献   
949.
The concentration of ions in plant cells and tissues is an essential factor in determining physiological function. In the present study, we established that concentration gradients of mobile ions exist in both xylem exudates and tissues within a barley (Hordeum vulgare) primary leaf. For K+ and NO3?, ion concentrations generally decreased from the leaf base to the tip in both xylem exudates and tissues. Ion gradients were also found for Pi and Cl? in the xylem. The hydathode strongly absorbed Pi and re‐translocated it to the rest of the plant, whereas Cl? was extruded. The ion concentration gradients developed early during leaf growth, increased as the tissue aged and remained under both high and low transpiration conditions. Measurement of the expression profiles of Pi, K+ and NO3? transporters along the longitudinal axis of the leaf revealed that some transporters are more expressed at the hydathode, but for most transporters, there was no significant variation along the leaf. The mechanisms by which longitudinal ion gradients develop in leaves and their physiological functions are discussed.  相似文献   
950.

Background

Ginseng is a traditional Chinese herb that has been used for thousands of years. In the present study, effects and mechanisms of AD-1 were evaluated for its development as a novel anti-lung cancer drug.

Methods

The cytotoxic activity was evaluated by MTT assay. Flow cytometry was employed to detect cell cycle, apoptosis and ROS. Western blot and immunohistochemistry were used to analyze signaling pathways. Lung cancer xenograft models were established by subcutaneous implantation of A549 or H292 cells into nude mice.

Results

AD-1 concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger — N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis. Treatment with NAC reduces AD-1-induced p38 phosphorylation, which indicates that ROS generation is involved in the AD-1-induced p38 activation. In mice, oral administration of AD-1 (10–40 mg/kg) dose-dependently inhibited the growth of xenograft tumors without affecting body weight and decreases the expression of VEGF, MMP-9 and CD34 in tumor tissue. TUNEL staining confirms that the tumors from AD-1 treated mice exhibit a markedly higher apoptotic index.

Conclusions and general significance

These data support development of AD-1 as a potential agent for lung cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号