首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5747篇
  免费   512篇
  国内免费   205篇
  6464篇
  2024年   25篇
  2023年   202篇
  2022年   255篇
  2021年   358篇
  2020年   346篇
  2019年   511篇
  2018年   348篇
  2017年   227篇
  2016年   218篇
  2015年   279篇
  2014年   384篇
  2013年   502篇
  2012年   285篇
  2011年   292篇
  2010年   201篇
  2009年   189篇
  2008年   198篇
  2007年   226篇
  2006年   188篇
  2005年   188篇
  2004年   113篇
  2003年   116篇
  2002年   144篇
  2001年   97篇
  2000年   89篇
  1999年   63篇
  1998年   55篇
  1997年   51篇
  1996年   34篇
  1995年   31篇
  1994年   30篇
  1993年   38篇
  1992年   28篇
  1991年   28篇
  1990年   15篇
  1989年   14篇
  1988年   16篇
  1987年   15篇
  1986年   15篇
  1985年   13篇
  1984年   10篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   3篇
  1972年   1篇
排序方式: 共有6464条查询结果,搜索用时 0 毫秒
101.
Retention of lipoproteins to proteoglycans in the subendothelial matrix (SEM) is an early event in atherosclerosis. We recently reported that collagen XVIII and its proteolytically released fragment endostatin (ES) are differentially depleted in blood vessels affected by atherosclerosis. Loss of collagen XVIII/ES in atherosclerosis-prone mice enhanced plaque neovascularization and increased the vascular permeability to lipids by distinct mechanisms. Impaired endothelial barrier function increased the influx of lipoproteins across the endothelium; however, we hypothesized that enhanced retention might be a second mechanism leading to the increased lipid content in atheromas lacking collagen XVIII. We now demonstrate a novel property of ES that binds both the matrix proteoglycan biglycan and LDL and interferes with LDL retention to biglycan and to SEM. A peptide encompassing the alpha coil in the ES crystal structure mediates the major blocking effect of ES on LDL retention. ES inhibits the macrophage uptake of biglycan-associated LDL indirectly by interfering with LDL retention to biglycan, but it has no direct effect on the macrophage uptake of native or modified lipoproteins. Thus, loss of ES in advanced atheromas enhances lipoprotein retention in SEM. Our data reveal a third protective role of this vascular basement membrane component during atherosclerosis.  相似文献   
102.
One of the biggest challenges for small interfering RNAs (siRNAs) as therapeutic agents is their insufficient cellular delivery efficiency. We developed long circulating and cationic liposomes to improve the cell uptake and inhibitory effectiveness of siRNA on the expression of vascular endothelial growth factor (VEGF) in cancer cells. SiRNA liposomes were obtained by polyelectrolyte complexation between negatively charged siRNA and positively charged liposome prepared by a hydration method. Gel electrophoresis was used to evaluate the loading efficiency of siRNA on the cationic liposome. The optimized siRNA liposomes were observed to be spherical in shape and had smooth surfaces with particle sizes of 167.7?±?2.0?nm and zeta potentials of 4.03?±?0.69?mV, which had no significant change when stored at 4?°C for three months. Fluorescence-activated cell sorting studies and confocal laser scanning images indicated that the cationic liposomes significantly increased the uptake of fluorescence-labeled siRNA in cancer cells. Effects of the siRNA on the inhibition of VEGF were tested by measuring concentrations of VEGF in cell culture media via an enzyme-linked immunosorbent assay and intracellular VEGF levels using a western blotting method. The liposomal siRNA was significantly effective at inhibiting the expression of VEGF in lung, liver and breast cancer cells. Optimal liposomes could effectively deliver siRNA into cancer cells and inhibit VEGF as a therapy agent.  相似文献   
103.
To elucidate the link between the intake of animal fat and asthma, a murine model was developed to examine the effect of dietary cholesterol on pulmonary allergic inflammation. Male C57BL6 mice were fed either a control diet or a diet supplemented with 2% cholesterol. Following sensitization and inhalation exposure to ovalbumin, the bronchoalveolar lavage fluid of mice in the cholesterol group contained higher numbers of eosinophils and elevated levels of IL-5, PGE2, and MCP-1. In addition, dietary cholesterol also resulted in elevated production of IL-4 and IFN- by lymphocytes isolated from the lungs. These inflammatory indicators were all significantly correlated with serum cholesterol levels. In contrast to the effect of dietary cholesterol, adding pravastatin to the drinking water significantly reduced eosinophil infiltration and the levels of IL-5, PGE2 and MCP-1 in lavage fluid. Although dietary cholesterol did not alter baseline IL-12 in the lungs, in mice challenged with ovalbumin the IL-12 levels were reduced in the cholesterol group and elevated significantly in the pravastatin group. The results suggest that dietary cholesterol might enhance pulmonary allergic inflammation, possibly involving both nonspecific inflammatory processes and lymphocyte activities.  相似文献   
104.
105.
Brain expression of heme oxygenase (HO) and nitric oxide synthase (NOS) in hypertension may participate in the pathogenesis of hypertension-related neuronal disorders, such as vascular dementia. In the present study, expression levels of HO and NOS in spontaneously hypertensive rats (SHR) were investigated using Western immunoblotting assay. Expression level of inducible HO-1 in hippocampus of 4-wk prehypertensive SHR was about twofold of that in age-matched Sprague-Dawley (SD) rats (p<0.01). In 23-wk SHR with fully developed hypertension, hippocampal HO-1 level was significantly greater than that of age-matched SD rats (p<0.05), but not different from 4-wk SHR. There was no difference in expression levels of hippocampal HO-2 between SHR and SD rats at different ages. Total enzymatic activity of hippocampal HO was significantly greater in 23-wk SHR than in age-matched SD rats or 4-wk SD/SHR (p<0.01). Although hippocampal expression of nNOS protein was relatively unchanged, iNOS expression in 23-wk SHR was about fourfold lower than that in age-matched SD rats and 4-wk SD/SHR (p<0.01). Total enzymatic activity of hippocampal NOS was significantly lower in 23-wk SHR than in age-matched SD rats or 4-wk SD/SHR (p<0.01). Significantly suppressed Morris water maze performance was found in 23-wk SHR in comparison with age-matched SD rats. Because SHR has been used as a model of vascular dementia and hippocampus is essential for spatial learning and memory, understanding of altered HO/CO and NOS/NO systems in the hippocampus of adult SHR may shed light on the pathogenic development of memory deficits associated with vascular dementia.  相似文献   
106.
The early changes in hepatic metallothionein (MT) and plasma zinc (Zn), copper (Cu), and iron (Fe) were investigated during the induction of adjuvant (AJ) arthritis in rats in conjunction with cyclosporin (CSA) treatment. Plasma Zn decreased after AJ injection (60% of control values at 8 h), and this was associated with a 4.5-fold increase in hepatic MT at 8 h. Plasma Zn was lowest at 16 h (40% of control), whereas hepatic MT concentrations increased to a maximum of 20-fold at 16 h. Changes in plasma Fe paralleled those of Zn, whereas plasma Cu levels were increased. Plasma metal and hepatic MT concentrations returned toward normal from d 1–7. At d 14, when marked paw swelling was apparent, hepatic MT and plasma Cu were again increased and plasma Zn decreased. Administration of CsA decreased MT induction in rats injected with AJ and also caused a marked recovery in plasma Zn and Fe levels. These changes were small but significant even in the early stages (up to 24 h) after AJ injection and were followed by a sustained improvement in all parameters, corresponding to the nonappearance of clinical arthropathy in CsA-treated rats. TNF-α and IL-6 production by peritoneal macrophages isolated from AJ-injected rats was significantly decreased by CsA treatment at d 7 and 14. The inhibition of hepatic MT induction during acute and chronic inflammation by cyclosporin emphasizes the role of the immune system in altered metal homeostasis in inflammation.  相似文献   
107.
Induction of osteoblast differentiation indices by statins in MC3T3-E1 cells   总被引:11,自引:0,他引:11  
Statins inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which catalyzes conversion of HMG-CoA to mevalonate, a rate-limiting step in cholesterol synthesis. The present study was undertaken to understand the events of osteoblast differentiation induced by statins. Simvastatin at 10(-7) M markedly increased mRNA expression for bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), alkaline phosphatase, type I collagen, bone sialoprotein, and osteocalcin (OCN) in nontransformed osteoblastic cells (MC3T3-E1), while suppressing gene expression for collagenase-1, and collagenase-3. Extracellular accumulation of proteins such as VEGF, OCN, collagenase-digestive proteins, and noncollagenous proteins was increased in the cells treated with 10(-7) M simvastatin, or 10(-8) M cerivastatin. In the culture of MC3T3-E1 cells, statins stimulated mineralization; pretreating MC3T3-E1 cells with mevalonate, or geranylgeranyl pyrophosphate (a mevalonate metabolite) abolished statin-induced mineralization. Statins stimulate osteoblast differentiation in vitro, and may hold promise drugs for the treatment of osteoporosis in the future.  相似文献   
108.
Chemokines are small secreted proteins that are essential for the recruitment and activation of specific leukocyte subsets at sites of inflammation and for the development and homeostasis of lymphoid and nonlymphoid tissues. During the past decade, chemokines and their receptors have also emerged as key signaling molecules in neuroinflammatory processes and in the development and functioning of the central nervous system. Neurons and glial cells, including astrocytes, oligodendrocytes, and microglia, have been identified as cellular sources and/or targets of chemokines produced in the central nervous system in physiological and pathological conditions. In this article, we provide an update of chemokines and chemokine receptors expressed by glial cells focusing on their biological functions and implications in neurological diseases.  相似文献   
109.
Cytokines and chemokines are responsible for regulating inflammation and the immune response. Cytokine and chemokine release is typically measured by quantitative enzyme-linked immunosorbant assay (ELISA) or Western blot analysis. To expedite the analysis of samples for multiple cytokines/chemokines, we have developed slide-based Thermo Scientific ExcelArray Antibody Sandwich Microarrays. Each slide consists of 16 subarrays (wells), each printed with 12 specific antibodies in triplicate and positive and negative control elements. This 16-well format allows for the analysis of 10 test samples using a six-point standard curve. The array architecture is based on the "sandwich" ELISA, in which an analyte protein is sandwiched between an immobilized capture antibody and a biotinylated detection antibody, using streptavidin-linked Thermo Scientific DyLight 649 Dye for quantitation. The observed sensitivity of this assay was <10 pg/mL. In our experiments, the Jurkat cell line was used as a model for human T-cell leukemia, and the A549 cell line was used as a model for human non-small cell lung cancer. To evoke a cytokine/chemokine response, cells were stimulated with tumor necrosis factor alpha (TNFalpha), phorbol-12-myristate-13-acetate (PMA, TPA), and phytohemagglutinin (PHA). Cell supernatants derived from both untreated and stimulated cells were analyzed on four different arrays (Inflammation I, Inflammation II, Angiogenesis, and Chemotaxis), enabling the quantitation of 41 unique analytes. Stimulated cells showed an increase in the expression level of many of the test analytes, including IL-8, TNF-alpha, and MIP-1alpha, compared to the non-treated controls. Our experiments clearly demonstrate the utility of antibody microarray analysis of cell-culture supernatants for the profiling of cellular inflammatory mediator release.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号