首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8390篇
  免费   1456篇
  国内免费   556篇
  10402篇
  2024年   85篇
  2023年   138篇
  2022年   131篇
  2021年   183篇
  2020年   457篇
  2019年   555篇
  2018年   504篇
  2017年   479篇
  2016年   422篇
  2015年   457篇
  2014年   466篇
  2013年   638篇
  2012年   385篇
  2011年   385篇
  2010年   293篇
  2009年   380篇
  2008年   414篇
  2007年   395篇
  2006年   365篇
  2005年   331篇
  2004年   300篇
  2003年   288篇
  2002年   238篇
  2001年   220篇
  2000年   189篇
  1999年   202篇
  1998年   181篇
  1997年   141篇
  1996年   139篇
  1995年   143篇
  1994年   116篇
  1993年   100篇
  1992年   94篇
  1991年   91篇
  1990年   58篇
  1989年   47篇
  1988年   49篇
  1987年   51篇
  1986年   35篇
  1985年   45篇
  1984年   51篇
  1983年   26篇
  1982年   32篇
  1981年   25篇
  1980年   21篇
  1979年   15篇
  1978年   15篇
  1976年   5篇
  1974年   5篇
  1972年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Catch per unit effort (CPUE), length, weight and maturity data for Clarias gariepinus were collected during monthly gillnet surveys in the upper Okavango Delta between 2001 and 2009 to investigate their relationship with the annual flood-pulse. CPUE, condition factor (K) and the proportion of ripe-running fish (PRR) in the population followed a unimodal annual cycle that could be modelled using water temperature and flood-pulse hydrology. Increased CPUE during declining water levels was most likely a result of feeding migrations and aggregation behaviour. The observed increase in K during low floods in October and November preceded the increase in PRR, which increased mainly with increasing temperature but appeared less dependent on flow. This study provided quantitative evidence that the biology of fish in the Okavango Delta is mainly dependent on the annual flood regime and, therefore, that conservation efforts should be focused on maintaining natural flow patterns in the face of climate change and potential water extraction schemes upstream.  相似文献   
962.
A new concept of multiple redox semi‐solid‐liquid (MRSSL) flow battery that takes advantage of active materials in both liquid and solid phases, is proposed and demonstrated. Liquid lithium iodide (LiI) electrolyte and solid sulfur/carbon (S/C) composite, forming LiI‐S/C MRSSL catholyte, are employed to demonstrate this concept. Record volumetric capacity (550 Ah L?1catholyte) is achieved using highly concentrated and synergistic multiple redox reactions of LiI and sulfur. The liquid LiI electrolyte is found to increase the reversible volumetric capacity of the catholyte, improve the electrochemical utilization of the S/C composite, and reduce the viscosity of catholyte. A continuous flow test is demonstrated and the influence of the flow rate on the flow battery performance is discussed. The MRSSL flow battery concept transforms inactive component into bi‐functional active species and creates synergistic interactions between multiple redox couples, offering a new direction and wide‐open opportunities to develop high‐energy‐density flow batteries.  相似文献   
963.
Zhou YF  Eng ET  Nishida N  Lu C  Walz T  Springer TA 《The EMBO journal》2011,30(19):4098-4111
At the acidic pH of the trans-Golgi and Weibel-Palade bodies (WPBs), but not at the alkaline pH of secretion, the C-terminal ~1350 residues of von Willebrand factor (VWF) zip up into an elongated, dimeric bouquet. Six small domains visualized here for the first time between the D4 and cystine-knot domains form a stem. The A2, A3, and D4 domains form a raceme with three pairs of opposed, large, flower-like domains. N-terminal VWF domains mediate helical tubule formation in WPBs and template N-terminal disulphide linkage between VWF dimers, to form ultralong VWF concatamers. The dimensions we measure in VWF at pH 6.2 and 7.4, and the distance between tubules in nascent WPB, suggest that dimeric bouquets are essential for correct VWF dimer incorporation into growing tubules and to prevent crosslinking between neighbouring tubules. Further insights into the structure of the domains and flexible segments in VWF provide an overall view of VWF structure important for understanding both the biogenesis of ultralong concatamers at acidic pH and flow-regulated changes in concatamer conformation in plasma at alkaline pH that trigger hemostasis.  相似文献   
964.
Thanks to low costs and the abundance of the resources, sodium‐ion (SIBs) and potassium‐ion batteries (PIBs) have emerged as leading candidates for next‐generation energy storage devices. So far, only few materials can serve as the host for both Na+ and K+ ions. Herein, a cubic phase CuSe with crystal‐pillar‐like morphology (CPL‐CuSe) assembled by the nanosheets are synthesized and its dual functionality in SIBs and PIBs is comprehensively studied. The electrochemical measurements demonstrate that CPL‐CuSe enables fast Na+ and K+ storage as well as the sufficiently long duration. Specifically, the anode delivers a specific capacity of 295 mA h g?1 at current density of 10 A g?1 in SIBs, while 280 mA h g?1 at 5 A g?1 in PIBs, as well as the high capacity retention of nearly 100% over 1200 cycles and 340 cycles, respectively. Remarkably, CPL‐CuSe exhibits a high initial coulombic efficiency of 91.0% (SIBs) and 92.4% (PIBs), superior to most existing selenide anodes. A combination of in situ X‐ray diffraction and ex situ transmission electron microscopy tests fundamentally reveal the structural transition and phase evolution of CuSe, which shows a reversible conversion reaction for both cells, while the intermediate products are different due to the sluggish K+ insertion reaction.  相似文献   
965.
Knowledge of the nature and extent of karyotypic differences between species provides insight into the evolutionary history of the genomes in question and, in the case of closely related species, the potential for genetic exchange between taxa. We constructed high-density genetic maps of the silverleaf sunflower (Helianthus argophyllus) and Algodones Dune sunflower (H. niveus ssp. tephrodes) genomes and compared them to a consensus map of cultivated sunflower (H. annuus) to identify chromosomal rearrangements between species. The genetic maps of H. argophyllus and H. niveus ssp. tephrodes included 17 linkage groups each and spanned 1337 and 1478 cM, respectively. Comparative analyses revealed greater divergence between H. annuus and H. niveus ssp. tephrodes (13 inverted segments, 18 translocated segments) than between H. annuus and H. argophyllus (10 inverted segments, 8 translocated segments), consistent with their known phylogenetic relationships. Marker order was conserved across much of the genome, with 83 and 64% of the H. argophyllus and H. niveus ssp. tephrodes genomes, respectively, being syntenic with H. annuus. Population genomic analyses between H. annuus and H. argophyllus, which are sympatric across a portion of the natural range of H. annuus, revealed significantly elevated genetic structure in rearranged portions of the genome, indicating that such rearrangements are associated with restricted gene flow between these two species.  相似文献   
966.
The binding of Hoechst 33258 and DAPI to five different (A/T)4 sequences in a stable DNA hairpin was studied exploiting the substantial increase in dye fluorescence upon binding. The two dyes have comparable affinities for the AATT site (e.g. association constant K(a)=5.5 x 10(8) M(-1) for DAPI), and their affinities decrease in the series AATT > TAAT approximately equal to ATAT > TATA approximately equal to TTAA. The extreme values of K(a) differ by a factor of 200 for Hoechst 33258 but only 30 for DAPI. The binding kinetics of Hoechst 33258 were measured by stopped-flow under pseudo-first order conditions with an (A/T)4 site in excess. The lower-resolution experiments can be well represented by single exponential processes, corresponding to a single-step binding mechanism. The calculated association-rate parameters for the five (A/T)4 sites are similar (2.46 x 10(8) M(-1) s(-1) to 0.86 x 10(8) M(-1) s(-1)) and nearly diffusion-controlled, while the dissociation-rate parameters vary from 0.42 s(-1) to 96 s(-1). Thus the association constants are kinetically controlled and are close to their equilibrium-determined values. However, when obtained with increased signal-to-noise ratio, the kinetic traces for Hoechst 33258 binding at the AATT site reveal two components. The concentration dependencies of the two time constants and amplitudes are consistent with two different kinetically equivalent two-step models. In the first model, fast bimolecular binding is followed by an isomerization of the initial complex. In the second model, two single-step associations form two complexes that mutually exclude each other. For both models the four reaction-rate parameters are calculated. Finally, specific dissociation kinetics, using poly[d(A-5BrU)], show that the kinetics are even more complex than either two-step model. We correlate our results with the different binding orientations and locations of Hoechst 33258 in the DNA minor groove found in several structural studies in the literature.  相似文献   
967.
In this study we investigated virus production in two marine phytoplankton species and how it relates to the host's cell cycle. Phaeocystis pouchetii (Hariot) Lagerheim and Pyramimonas orientalis McFadden, Hill & Wetherby, growing synchronously in batch cultures, were infected with their respective viruses (PpV and PoV) at four different stages in the cell cycle and the production of free virus was then measured for 30 h. The virus production in P. orientalis infected with PoV depended on the time of infection, whereas no such relation was found for P. pouchetii infected with PpV. The P. orientalis cultures infected at the end of the dark period and at the beginning of the light period produced three times more virus than those infected in the middle of the light period and eight times more virus than those infected at the beginning of the dark period. The latent periods for PpV and PoV were 12–14 h and 18–20 h, respectively, and in both cases were independent of the host cell cycle. The differences in virus production may be attributed to light or cell cycle dependent regulation of host infection, metabolism, or burst size. Regardless of the mechanism, these differences may be related to differences in the ecological strategies of the hosts and their ability to form blooms.  相似文献   
968.
The effects of elevated carbon dioxide (CO2) concentration on plant water use are best evaluated on plants grown under field conditions and with measurement techniques that do not disturb the natural function of the plant. Heat balance sap flow gauges were used on individual main stems of wheat (Triticum aestivum L. cv Yecora rojo) grown under normal ambient conditions (control) and in a free-air CO2 enrichment (FACE) system in Arizona with either high (control + high H2O = CW; FACE + high H2O = FW) or low (control + low H2O = CD; FACE + low H2O = FD) irrigation regimens. Over a 30d period (stem elongation to anthesis), combinations of treatments were monitored with,10–40 gauges per treatment. The effects of increased CO2 on tiller water use were inconsistent in both the diurnal patterns of sap flow and the statistical analyses of daily sap flow (Ftot). Initial results suggested that the reductions in Ftot, from CO2 enrichment were small (,0–10%) in relation to the H2O treatment effect (,20–30%). For a 3d period, Ftot of FW was,19–26% less than that of CW (P = 0.10). Examination of the different sources of variation in the study revealed that the location of gauges within the experimental plots influenced the variance of the sap flow measurements. This variation was probably related to positional variation in subsurface drip lines used to irrigate plots. A sampling design was proposed for use of sap flow gauges in FACE systems with subsurface irrigation that takes into account the main treatment effects of CO2 enrichment and the other sources of variation identified in this study. Despite the small and often statistically non-significant differences in Ftot between the CW and FW treatments, cumulative water use of the FW treatment at the end of the first three test periods ranged from 7 to 23% lower than that of the CW treatment. Differences in sap flow between FW and CW compared well with treatment differences in evapotranspiration. The results of the study, based on the first reported sap flow measurements of wheat, suggest that irrigation requirements for wheat production, in the present climatic regimen of the south-western US, may be predicted to decrease slightly because of increasing atmospheric CO2.  相似文献   
969.
Water-conducting properties of lipids during pollen hydration   总被引:3,自引:0,他引:3  
Based on the authors’ previous work an attempt has been made to study water flow in the lipid matrix during pollen hydration. The present study has demonstrated that in the presence of small amounts of water, the type of lipids used defined the time of hydration of pollen in vivo on the stigma and in vitro. Several approaches were used including cryo‐scanning electron microscopy, magnetic resonance imaging and Fourier transform infrared microspectroscopic imaging, with the purpose of detecting very small amounts of water. The results show that no water is detectable in the lipid matrix. It was observed and concluded that the water for pollen hydration accumulates as a thin layer at the contact side between pollen and stigma, during the normal process of pollination in plant species with a wet stigma. However, using the same species deprived of the stigma by cell ablation, it was shown that the layer of water observed in wild‐type plants is not necessary for pollen hydration.  相似文献   
970.
An instrumentation and automation system for a side-vented pan coater with a novel air-flow rate measurement system for monitoring the film-coating process of tablets was designed and tested. The instrumented coating system was tested and validated by film-coating over 20 pilot-scale batches of tablets with aqueous-based hydroxypropyl methylcellulose (HPMC). Thirteen different process parameters were continuously measured and monitored, and the most significant ones were logged for analysis. Laser profilometry was used to measure the surface roughness of the coated tablets. The instrumentation system provided comprehensive and quantitative information on the process parameters monitored. The measured process parameters and the responses of the film-coated tablet batches showed that the coating process is reproducible. The inlet air-flow rate influenced the coating process and the subsequent quality of the coated tablets. Increasing the inlet flow rate accelerated the drying of the tablet surface. At high inlet flow rate, obvious film-coating defects (ie, unacceptable surface roughness of the coated tablets) were observed and the loss of coating material increased. The instrumented and automated pancoating system described, including historical data storage capability and a novel air-flow measurement system, is a useful tool for controlling and characterizing the tablet film-coating process. Monitoring of critical process parameters increases the overall coating process efficiency and predictability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号