首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   6篇
  国内免费   3篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2020年   1篇
  2019年   6篇
  2018年   3篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2003年   4篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有74条查询结果,搜索用时 93 毫秒
51.
Lianas (woody climbers) are structural parasites of trees that compete with them for light and below‐ground resources. Most studies of liana–tree interactions are based on ground‐level observations of liana stem density and size, with these assessments generally assumed to reflect the amount of liana canopy cover and overall burden to the tree. We tested this assumption in a 1‐ha plot of lowland rainforest in tropical Australia. We recorded 1072 liana stems (≥1 cm diameter at breast height {dbh}) ha?1 across all trees (≥10 cm dbh) on the plot and selected 58 trees for detailed study. We estimated liana canopy cover on selected trees that hosted 0–15 liana individuals, using a 47‐m‐tall canopy crane. Notably, we found no significant correlations between liana canopy cover and three commonly used ground‐based measurements of liana abundance as follows: liana stem counts per tree, liana above‐ground biomass per tree and liana basal area per tree. We also explored the role of tree size and liana infestation and found that larger trees (≥20 cm dbh) were more likely to support lianas and to host more liana stems than smaller trees (≤20 cm dbh). This pattern of liana stem density, however, did not correlate with greater liana coverage in the canopy. Tree family was also found to have a significant effect on likelihood of hosting lianas, with trees in some families 3–4 times more likely to host a liana than other families. We suggest that local ground‐based measures of liana–tree infestation may not accurately reflect liana canopy cover for individual trees because they were frequently observed spreading through neighbouring trees at our site. We believe that future liana research will benefit from new technologies such as high‐quality aerial photography taken from drones when the aim is to detect the relative burden of lianas on individual trees.  相似文献   
52.
Aim Lianas differ physiologically from trees, and therefore their species‐richness patterns and potential climate‐change responses might also differ. However, multivariate assessments of spatial patterns in liana species richness and their controls are lacking. Our aim in this paper is to identify the environmental factors that best explain the variation in liana species richness within tropical forests. Location Lowland and montane Neotropical forests. Methods We quantified the contributions of environmental variables and liana and tree‐and‐shrub abundance to the species richness of lianas, trees and shrubs ≥ 2.5 cm in diameter using a subset of 65 standardized (0.1 ha) plots from 57 Neotropical sites from a global dataset collected by the late Alwyn Gentry. We used both regression and structural equation modelling to account for the effects of environmental variables (climate, soil and disturbance) and liana density on liana species richness, and we compared the species‐richness patterns of lianas with those of trees and shrubs. Results We found that, after accounting for liana density, dry‐season length was the dominant predictor of liana species richness. In addition, liana species richness was also related to stand‐level wood density (a proxy for disturbance) in lowland forests, a pattern that has not hitherto been shown across such a large study region. Liana species richness had a weak association with soil properties, but the effect of soil may be obscured by the strong correlation between soil properties and climate. The diversity patterns of lianas and of trees and shrubs were congruent: wetter forests had a greater species richness of all woody plants. Main conclusions The primary association of both liana and tree‐and‐shrub species richness with water availability suggests that, if parts of the Neotropics become drier as a result of climate change, substantial declines in the species richness of woody plants at the stand level may be anticipated.  相似文献   
53.
崀山丹霞地貌区野生藤本植物区系与生长特性分析   总被引:1,自引:0,他引:1  
采用线路与样方相结合的调查方法,对崀山丹霞地貌区野生藤本植物区系的种类组成及重要类群进行了调查,并根据调查结果对该藤本植物区系的分布区类型、生活型、叶质和叶级及生长特性和群落形成因素进行了分析.结果显示,崀山丹霞地貌区有野生藤本植物41科75属131种,其中蕨类植物和裸子植物各有1科1属1种,被子植物有39科73属129种;在被子植物中,双子叶植物有34科68属121种,具有明显优势.比较重要的科有蝶形花科(Papilionaceae)、葡萄科(Vitaceae)、茜草科(Rubiaceae)、防己科(Menispermaceae)和卫矛科(Celastraceae), 重要属有铁线莲属(Clematis L. )、蔷薇属(Rosa L. )、猕猴桃属(Actinidia Lindl. )、南蛇藤属(Celastrus L. )、葡萄属(Vitis L. )、蛇葡萄属(Ampelopsis Michaux)和地锦属(Parthenocissus Planch. ).该藤本植物区系含有12个分布区类型,具有明显的热带属性, 热带分布属占总属数的66.19%, 东亚分布和东亚-北美间断分布类型在该藤本植物区系中也有重要作用.在该藤本植物区系中,高位芽、地上芽、地面芽、地下芽和1年生草本植物的比例分别为78.63%、 8.40%、 5.34%、 6.87%和0.76%, 并且以缠绕类的数量占优势, 缠绕类、卷曲类、吸固类和搭靠类藤本植物的比例分别为51.91%、 21.37%、 15.27%和11.45%;叶质以纸质叶为主,占83.21%;叶级谱为中型叶35.88%、小型叶55.72%、微型叶7.63%、鳞型叶0.76%.调查结果表明,崀山丹霞地貌区野生藤本植物类型十分复杂,具有完整的生活型谱,区系组成具有地带性植被--亚热带常绿阔叶林的特征;在崀山丹霞赤壁上由藤本植物和苔藓、矮小草本植物组成的盖度较大的藤本植物组合已经成为一个生态功能单位,形成了一个新的藤本植物植被类型.  相似文献   
54.
Wood and bark anatomy of lianoid Indomalesian and Asiatic species of Gnetum   总被引:1,自引:0,他引:1  
Quantitative and qualitative data on wood and bark are offered for 11 species of lianoid Indomalesian and Asiatic species of Gnetum section Cylindrostachys. Material of roots was studied for two species, material of an underground stem for one species, and stem material was studied for all species; wood from inside and outside of a large stem of G. montanum was analysed (quantitative data do not change with age in this species). Roots have shorter, narrower vessel elements, more numerous per mm2, compared with those of stems; these trends run counter to those in dicotyledons. Roots and underground stems have more abundant parenchyma and less abundant sclerenchyma than do stems. Parenchyma of both roots and stems is rich in starch. All of the species studied here have both fibre-tracheids and tracheids, but tracheids are not distributed vasicentrically as they are in dicotyledons. Tori are reported for tracheary elements of three species studied here. Vasicentric axial parenchyma (which usually is thick-walled) is present in all species; thick or thin-walled diffuse or diffuse-in-aggregates apotracheal parenchyma is present in almost all of the species studied. Rays are mostly dimorphic in size, but show various conditions with respect to wall thickness, sclerenchyma presence, and crystal presence. As in other lianoid species of Gnetum, the species of the present study show origin of lateral meristem activity in parenchyma of the innermost cortex. Cortex and bark of the species studied here are relatively uniform in distribution of gelatinous fibres, nests of sclereids, the cylinder of brachysclereids that extends around the stem, and sclerenchymatous phelloderm. Laticifers were observed in bark of only two species studied. Although a few species characters are evident, the species that comprise Section cylindrostachys differ from each other mostly in degree rather than in presence or absence character state distributions. Secretory cavities are newly reported for the genus.  相似文献   
55.
56.
57.
Seedling growth strategies in Bauhinia species: comparing lianas and trees   总被引:2,自引:0,他引:2  
BACKGROUND AND AIMS: Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. METHODS: Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25% of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. KEY RESULTS: The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (A(area)) and similar photosynthetic rates per unit mass (A(mass)) than the trees. Across species, RGR was positively related to SLA, but not to LAR and A(area). CONCLUSIONS: It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species.  相似文献   
58.
Edge disturbance can drive liana community changes and alter liana‐tree interaction networks, with ramifications for forest functioning. Understanding edge effects on liana community structure and liana‐tree interactions is therefore essential for forest management and conservation. We evaluated the response patterns of liana community structure and liana‐tree interaction structure to forest edge in two moist semi‐deciduous forests in Ghana (Asenanyo and Suhuma Forest Reserves: AFR and SFR, respectively). Liana community structure and liana‐tree interactions were assessed in 24 50 × 50 m randomly located plots in three forest sites (edge, interior and deep‐interior) established at 0–50 m, 200 m and 400 m from edge. Edge effects positively and negatively influenced liana diversity in forest edges of AFR and SFR, respectively. There was a positive influence of edge disturbance on liana abundance in both forests. We observed anti‐nested structure in all the liana‐tree networks in AFR, while no nestedness was observed in the networks in SFR. The networks in both forests were less connected, and thus more modular and specialised than their null models. Many liana and tree species were specialised, with specialisation tending to be symmetrical. The plant species played different roles in relation to modularity. Most of the species acted as peripherals (specialists), with only a few species having structural importance to the networks. The latter species group consisted of connectors (generalists) and hubs (highly connected generalists). Some of the species showed consistency in their roles across the sites, while the roles of other species changed. Generally, liana species co‐occurred randomly on tree species in all the forest sites, except edge site in AFR where lianas showed positive co‐occurrence. Our findings deepen our understanding of the response of liana communities and liana‐tree interactions to forest edge disturbance, which are useful for managing forest edge.  相似文献   
59.
Aim Due to the important role of lianas in the functioning of forest ecosystem, knowledge of the factors that affect them are important in the management of forests. Currently, there are conflicting reports on the response of liana communities to disturbance, calling for more research in the area. The present study was carried out to investigate the response of liana diversity and structure to human disturbance within two major forests in the Penang National Park, Malaysia. The study also looked at the implication of the findings for conservation.Methods A total of 15 40 × 40-m 2 (or 40-m × 40-m) plots each were randomly located across a range of habitats in a primary forest and disturbed secondary forest. Trees with diameter at breast height ≥10 cm were examined for lianas with diameter ≥2 cm. Both lianas and trees were enumerated and compared between the two forests. Diversity and structural variables of lianas were compared between the two forests using the t -test analysis. Tree abundance was also compared between the two forests with t -test, while linear regression analysis was run to determine the effects of tree abundance on liana abundance.Important findings A total of 46 liana species belonging to 27 genera and 15 families were identified in the study. Human disturbance significantly reduced liana species richness and species diversity in the secondary forest. Liana abundance remained the same in both forests whereas liana basal area was significantly higher in the primary forest. Twiners and hook climbers were significantly more abundant in the primary and secondary forest, respectively. Large diameter lianas were more abundant in the primary forest compared with the secondary forest. The diameter distribution of most families in the primary forest followed the inverted J-shaped curve whereas only a few of the families in the secondary forest did so. Tree abundance was significantly higher in the primary forest. The abundance of lianas significantly depended on tree abundance in all the forests. The study has provided evidence of negative effects of human disturbance on liana diversity and structure that does not auger well for biodiversity in the forest. In view of the critical role of lianas in maintaining biodiversity in the forest ecosystem, lianas in the national park should be protected from further exploitation.  相似文献   
60.
Aim Lianas are abundant and diverse throughout the world and constitute an important structural and functional component of tropical forests. This study aims to investigate liana diversity, abundance and their functional traits in Indian tropical dry evergreen forest (TDEF).Methods A total of ten 1-ha plots, one each in 10 Indian TDEF sites were demarcated. Each 1-ha plot was divided into one-hundred 10- × 10-m quadrats to facilitate woody species inventory. All lianas ≥1cm diameter measured at 130cm from the rooting point and all trees ≥10-cm girth at breast height (gbh) were recorded from the study sites to analyze the patterns of liana diversity and abundance and also to compare the contribution of lianas to the total woody species richness, density and basal area. Liana variables across the study sites were compared using one-way analysis of variance. The qualitative functional traits of inventoried lianas and trees were assessed on the field and referring to pertinent field manuals.Important findings A total of 9237 liana individuals (ranged from 408–1658 individuals ha-1) representing 52 species, 45 genera and 28 families were encountered from the 10 study sites. Liana species richness ranged from 11–31 species ha-1 in 10 sites, which averaged 23.4 (±5.7) species ha-1. The total basal area of lianas in the study sites was 7. 3 m 2 (0.20–1.76 m 2 ha-1). There was a significant variation in liana species richness, density and basal area across the studied sites. On the whole, lianas contributed 52%, 49.3% and 4.1% to the total woody species (lianas and trees) richness, density and basal area, respectively. Liana trait analysis revealed the majority (50%) of lianas belonged to brevi-deciduous type. Stem twining was the chief climbing mechanism, exhibited by 21 species (52.6% of total abundance). More than half of the liana species (34 species; 6925 individuals) had microphyllous leaves. Fleshy-fruited lianas mostly bearing berries and drupes constituted the major fruit type in the studied sites. Zoochory was the predominant dispersal mode observed in 63.4% of species. Considering the ecological and functional role of lianas in Indian TDEF, the need for conservation is emphasized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号