首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   14篇
  国内免费   9篇
  2024年   3篇
  2023年   3篇
  2022年   5篇
  2021年   3篇
  2020年   6篇
  2019年   6篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   9篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
101.
Cold sensitivity of entomopathogenic nematodes severely restricts their biological control potential in some environments. We selected the SN strain of Steinernema feltiae together with its bacterial symbiont, Xenorhabdus bovenii, for improved cold tolerance by repeated passage through the wax moth Galleria mellonella larvae at 15°C. Nematode virulence (total insect mortality and speed of kill) and establishment (initiation of nematode development following penetration) were evaluated after six (= 12–24 generations) and 12 passages (= 24–36 generations). Cold selection enhanced nematode virulence at the cooler temperatures. Virulence measured as total insect-mortality at 8°C improved by 5.3- and 6.6-fold after six and 12 passages, respectively. Only small improvements (1.2–1.5-fold) were observed in speed of kill. Nematode establishment improved at all temperatures after 12 passages; the highest increase of 9-fold was observed at 8°C. Our results lend support to the hypotheses that functional traits along a continuously distributed environmental variable are genetically correlated and that the area under the fitness function is not always constant. Trade-offs in percentage mortality and speed of kill by the selected nematodes were observed at the warmer extreme after six passages of selection only. The implications of rapid changes in thermal sensitivity for economic mass-production of nematodes are discussed.  相似文献   
102.
包括产电菌群和噬电菌群的人工电活性微生物菌群(synthetic electroactive microbial consortia)通过菌种间的物质能量级联反应介导化学能与(光)电能间的相互转化,其可利用底物来源广泛、双向电子传递速率快、环境稳定性强,在清洁电能开发、废水处理、环境修复、生物固碳固氮以及生物燃料、无机纳米材料、高聚物等高值化学品合成等多个领域具有广泛的应用前景。针对人工电活性微生物菌群设计、构建与应用,本文总结电活性微生物菌群界面电子传递和种间电子传递机制,概括基于“劳力分工”原理设计构建人工电活性微生物菌群物质能量级联反应基本架构,总结菌群关系与菌群生态位优化等人工电活性微生物菌群工程化策略,分类列举人工电活性微生物菌群在利用廉价生物质产电、生物光伏固碳产电,光驱噬电生物菌群固氮等相关应用。最后对人工电活性微生物菌群未来研究方向进行了展望。  相似文献   
103.
The paper deals with a comparative analysis of the serological and ecological properties of Pseudomonas syringae pv. atrofaciens strains from the collections of microbial cultures at the Malkov Institute for Plant Genetic Resources and Zabolotny Institute of Microbiology and Virology. All of the strains from the Bulgarian collection, except for one, fall into five serogroups (II through VI) of the classification system of Pastushenko and Simonovich. The P. syringae pv. atrofaciens strains isolated from Bulgarian and Ukrainian wheats belong mainly to serogroups II and IV, respectively. The strains that were isolated from rye plants belong to serogroup I. The strains isolated from sorghum and Sudan grass belong to serogroups II, IV, and VI. Serogroup III includes the P. syringae pv. atrofaciens strains that were isolated from cereals in the United Kingdom but not in Ukraine.  相似文献   
104.
1. The endophagous weevil Lixus elongatus was studied on two Carduus species in order to look for the impact of a structural gradient in host plant stem diameter on the life cycle and the genetic structure of this species. 2. Body size of L. elongatus females was correlated positively with their fecundity and the stem diameter at the location of oviposition. 3. Emerging individuals showed a significantly positive relationship of body size with the stem diameter at their pupation and emergence site. Mating behaviour was positively size-assortative. 4. Allozyme analyses indicated a gradient of genetic differentiation along body size classes and a decreasing heterozygosity with decreasing body size. 5. The results led to the conclusion that a structural gradient in plants can promote body size variability in an endophagous herbivore through phenotypic constraints of the host plant and the herbivore. As size-assortative mating translates this variability into differential gene flow between individuals of different body size, this could provide the raw material for speciation processes. Within a single host plant patch, however, further processes are necessary to split the existing genetic gradient into separate gene pools.  相似文献   
105.
Aim Species distribution models are a potentially powerful tool for predicting the effects of global change on species distributions and the resulting extinction risks. Distribution models rely on relationships between species occurrences and climate and may thus be highly sensitive to georeferencing errors in collection records. Most errors will not be caught using standard data filters. Here we assess the impacts of georeferencing errors and the importance of improved data filtering for estimates of the elevational distributions, habitat areas and predicted relative extinction risks due to climate change of nearly 1000 Neotropical plant species. Location The Amazon basin and tropical Andes, South America. Methods We model the elevational distributions, or ‘envelopes’, of 932 Amazonian and Andean plant species from 35 families after performing standard data filtering, and again using only data that have passed through an additional layer of data filtering. We test for agreement in the elevations recorded with the collection and the elevation inferred from a digital elevation model (DEM) at the collection coordinates. From each dataset we estimate species range areas and extinction risks due to the changes in habitat area caused by a 4.5 °C increase in temperature. Results Amazonian and Andean plant species have a median elevational range of 717 m. Using only standard data filters inflates range limits by a median of 433 m (55%). This is equivalent to overestimating the temperature tolerances of species by over 3 °C – only slightly less than the entire regional temperature change predicted over the next 50–100 years. Georeferencing errors tend to cause overestimates in the amount of climatically suitable habitat available to species and underestimates in species extinction risks due to global warming. Georeferencing error artefacts are sometimes so great that accurately predicting whether species habitat areas will decrease or increase under global warming is impossible. The drawback of additional data filtering is large decreases in the number of species modelled, with Andean species being disproportionately eliminated. Main conclusions Even with rigorous data filters, distribution models will mischaracterize the climatic conditions under which species occur due to errors in the collection data. These errors affect predictions of the effects of climate change on species ranges and biodiversity, and are particularly problematic in mountainous areas. Additional data filtering reduces georeferencing errors but eliminates many species due to a lack of sufficient ‘clean’ data, thereby limiting our ability to predict the effects of climate change in many ecologically important and sensitive regions such as the Andes Biodiversity Hotspot.  相似文献   
106.
Shipworms are predominantly wood-eating bivalves that play fundamental roles in biodegradation, niche creation and nutrient cycling across a range of marine ecosystems. Shipworms remain confined to the wood they colonize as larvae; however, continual feeding and rapid growth to large sizes degrade both food source and habitat. This unique lifestyle has led to the evolution of a stunning diversity of reproductive strategies, from broadcast spawning to spermcasting, larval brooding and extreme sexual size dimorphism with male dwarfism. Some species also engage in pseudocopulation, a form of direct fertilization where groups of neighbouring individuals simultaneously inseminate one another via their siphons—the only part of the animal extending beyond the burrow. Among the Bivalvia, this exceptionally rare behaviour is unique to shipworms and remains infrequently observed and poorly understood. Herein, we document pseudocopulation with video footage in the giant feathery shipworm (Bankia setacea) and novel competitive behaviours, including siphon wrestling, mate guarding and the removal of a rival''s spermatozoa from the siphons of a recipient. As successful sperm transfer is likely greater for larger individuals with longer siphons, we suggest that these competitive behaviours are a factor selecting for rapid growth and large size in species that engage in pseudocopulation.  相似文献   
107.
《Developmental neurobiology》2017,77(10):1188-1205
Adult neurogenesis is a complex, presumably conserved phenomenon in vertebrates with a broad range of variations regarding neural progenitor/stem cell niches, cellular composition of these niches, migratory patterns of progenitors and so forth among different species. Current understanding of the reasons underlying the inter‐species differences in adult neurogenic potential, the identification and characterization of various neural progenitors, characterization of the permissive environment of neural stem cell niches and other important aspects of adult neurogenesis is insufficient. In the last decade, zebrafish has emerged as a very useful model for addressing these questions. In this review, we have discussed the present knowledge regarding the neural stem cell niches in adult zebrafish brain as well as their cellular and molecular attributes. We have also highlighted their similarities and differences with other vertebrate species. In the end, we shed light on some of the known intrinsic and extrinsic factors that are assumed to regulate the neurogenic process in adult zebrafish brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1188–1205, 2017  相似文献   
108.
Summary Two single-locus, deterministic models with discrete nonoverlapping generations are formulated for the maintenance of genetic variation in each of two distinct biological situations. The first two models are applicable to an autosomal locus in an hermaphroditic plant population with mixed selfing and random mating. They describe the interaction of migration and viability selection for, respectively, an island migration model and for a subdivided population. Pollen as well as seed may disperse. Sufficient conditions are derived and discussed for the existence of protected polymorphism in the diallelic case. The remaining two models are pertinent to migration and selection at a single X-linked locus. An island model is again considered as well as that of a subdivided population. Mating is at random, selection occurs only through viability differences, and the migration structure for males and females may differ. For a diallelic population, protection conditions are derived and discussed vis-à-vis the autosomal case.M.M. was supported by a U.S. Public Health Service training grant (Grant No. GM780).  相似文献   
109.
110.
《Cell Stem Cell》2023,30(5):648-664.e8
  1. Download : Download high-res image (184KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号