首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   843篇
  免费   26篇
  国内免费   15篇
  2023年   7篇
  2022年   8篇
  2020年   10篇
  2019年   19篇
  2018年   17篇
  2017年   6篇
  2016年   9篇
  2015年   8篇
  2014年   32篇
  2013年   87篇
  2012年   21篇
  2011年   49篇
  2010年   32篇
  2009年   44篇
  2008年   53篇
  2007年   44篇
  2006年   35篇
  2005年   31篇
  2004年   18篇
  2003年   23篇
  2002年   10篇
  2001年   12篇
  2000年   14篇
  1999年   13篇
  1998年   11篇
  1997年   5篇
  1996年   12篇
  1995年   10篇
  1994年   10篇
  1993年   11篇
  1992年   10篇
  1991年   11篇
  1990年   10篇
  1989年   10篇
  1988年   9篇
  1987年   10篇
  1986年   6篇
  1985年   9篇
  1984年   16篇
  1983年   18篇
  1982年   13篇
  1981年   11篇
  1980年   11篇
  1979年   15篇
  1978年   8篇
  1977年   12篇
  1976年   11篇
  1975年   7篇
  1974年   5篇
  1973年   11篇
排序方式: 共有884条查询结果,搜索用时 15 毫秒
81.
Phosphorylase b kinase (PhK) is a key enzyme involved in the conversion of glycogen to glucose in skeletal muscle and ultimately an increase in intracellular ATP. Since apoptosis is an ATP-dependent event, we investigated the regulation of skeletal muscle PhK during apoptosis. Incubation of PhK with purified caspase-3 in vitro resulted in the highly selective cleavage of the regulatory α subunit and resulted in a 2-fold increase in PhK activity. Edman protein sequencing of a stable 72 kD amino-terminal fragment and a 66 kD carboxy-terminal fragment revealed a specific caspase-3 cleavage site within the α subunit at residue 646 (DWMD↓G). Treatment of differentiated C2C12 mouse muscle myoblasts with the inducers of apoptosis staurosporine, TPEN, doxorubicin, or UV irradiation resulted in the disappearance of the α subunit of PhK as determined by immunoblotting, as well as a concurrent increase in caspase-3 activity. Moreover, induction of apoptosis by TPEN resulted in increased phosphorylase activity and sustained ATP levels throughout a 7 h time course. However, induction of apoptosis with staurosporine, also a potent PhK inhibitor, led to a rapid loss in phosphorylase activity and intracellular ATP, suggesting that PhK inhibition by staurosporine impairs the ability of apoptotic muscle cells to generate ATP. Thus, these studies indicate that PhK may be a substrate for caspase regulation during apoptosis and suggest that activation of this enzyme may be important for the generation of ATP during programmed cell death.  相似文献   
82.
Astrocytes become activated in response to brain injury, as characterized by increased expression of glial fibrillary acidic protein (GFAP) and increased rates of cell migration and proliferation. Damage to brain cells causes the release of cytoplasmic nucleotides, such as ATP and uridine 5'-triphosphate (UTP), ligands for P2 nucleotide receptors. Results in this study with primary rat astrocytes indicate that activation of a G protein-coupled P2Y(2) receptor for ATP and UTP increases GFAP expression and both chemotactic and chemokinetic cell migration. UTP-induced astrocyte migration was inhibited by silencing of P2Y(2) nucleotide receptor (P2Y(2)R) expression with siRNA of P2Y(2)R (P2Y(2)R siRNA). UTP also increased the expression in astrocytes of alpha(V)beta(3/5) integrins that are known to interact directly with the P2Y(2)R to modulate its function. Anti-alpha(V) integrin antibodies prevented UTP-stimulated astrocyte migration, suggesting that P2Y(2)R/alpha(V) interactions mediate the activation of astrocytes by UTP. P2Y(2)R-mediated astrocyte migration required the activation of the phosphatidylinositol-3-kinase (PI3-K)/protein kinase B (Akt) and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways, responses that also were inhibited by anti-alpha(V) integrin antibody. These results suggest that P2Y(2)Rs and their associated signaling pathways may be important factors regulating astrogliosis in brain disorders.  相似文献   
83.
Arsenic (As) is a potential contaminant of groundwater as well as soil in many parts of the world. The effects of increasing concentration of As (25 μm and 50 μm As2O3) in the medium on the content of starch and sugars and activity levels of enzymes involved in starch and sugar metabolism i.e. α-amylase, β-amylase, starch phosphorylase and acid invertase were studied in germinating seeds of two rice cvs. Malviya-36 and Pant-12 during 0–120 h period. As toxicity in situ led to a marked decline in the activities of α-amylase, β-amylase in endosperms as well as embryoaxes of germinating rice seeds. The activity of acid invertase increased in endosperms as well as embryoaxes whereas starch phosphorylase activity declined in endosperms but increased in embryoaxes under As treatment. In endosperms a decline in starch mobilization was observed under As toxicity, however under similar conditions the content of total soluble sugars increased in embryoaxes. The observed inhibition in activities of amylolytic enzymes might contribute to delayed mobilization of endospermic starch which could affect germination of seeds in As polluted environment, while the induced acid invertase activity and increased sugar accumulation in embryoaxes could serve as a possible component for adaptation mechanism of rice seedlings grown under As containing medium.  相似文献   
84.
85.
Phosphorylase kinase (PhK), a regulatory enzyme in the cascade activation of glycogenolysis, is a 1.3-MDa hexadecameric complex, (alphabetagammadelta)(4). PhK comprises two arched octameric (alphabetagammadelta)(2) lobes that are oriented back-to-back with overall D(2) symmetry and connected by small bridges. These interlobal bridges, arguably the most questionable structural component of PhK, are one of several structural features that potentially are artifactually generated or altered by conventional sample preparation techniques for electron microscopy (EM). To minimize such artifacts, we have solved by cryoEM the first three-dimensional (3D) structure of nonactivated PhK from images of frozen hydrated molecules of the kinase. Minimal dose electron micrographs of PhK in vitreous ice revealed particles in a multitude of orientations. A simple model was used to orient the individual images for 3D reconstruction, followed by multiple rounds of refinement. Three-dimensional reconstruction of nonactivated PhK from approximately 5000 particles revealed a bridged, bilobal molecule with a resolution estimated by Fourier shell correlation analysis at 25 A. This new structure suggests that several prominent features observed in the structure of PhK derived from negatively stained particles arise as artifacts of specimen preparation. In comparison to the structure from negative staining, the cryoEM structure shows three important differences: (1) a dihedral angle between the two lobes of approximately 90 degrees instead of 68 degrees, (2) a compact rather than extended structure for the lobes, and (3) the presence of four, rather than two, connecting bridges, which provides the first direct evidence for these components as authentic elements of the kinase solution structure.  相似文献   
86.
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and drugs that inhibit this enzyme may have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Here, we describe kinetics and crystal structure of human PNP in complex with 7-methyl-6-thio-guanosine, a synthetic substrate, which is largely used in activity assays. Analysis of the structure identifies different protein conformational changes upon ligand binding, and comparison of kinetic and structural data permits an understanding of the effects of atomic substitution on key positions of the synthetic substrate and their consequences to enzyme binding and catalysis. Such knowledge may be helpful in designing new PNP inhibitors.  相似文献   
87.
Murota K  Terao J 《FEBS letters》2005,579(24):5343-5346
Quercetin is a major flavonoid in plant foods and potentially has beneficial effects on disease prevention. The present work demonstrated that quercetin was transported into the lymph after being metabolized in the gastrointestinal mucosa of rats. Glucuronide/sulfate and methylated conjugates of quercetin appeared in the lymph, but not quercetin aglycone. The highest lymphatic concentration was found at as rapid as 30 min after administration, suggesting gastric absorption, whereas the mucosal glucuronidation activity was significantly higher in the duodenum and jejunum than in the stomach. This is the first report to show the lymphatic flavonoid transport pathway from the gastrointestinal tract.  相似文献   
88.
Plasma guanine deaminase (guanase; GD) is well established as an indicator of hepatocellular disease, recently being applied in the detection of hepatitis C in donor blood and in the diagnosis of hepatoma. No totally efficient, simple method for the estimation of plasma GD activity is routine since both guanine and 8-azaguanine, the substrates of the enzyme, are scarcely soluble in water. This difficulty in preparing stable substrates of sufficient concentration has resulted in methods that are both troublesome and inaccurate. Here we describe the development of new colorimetric and high-performance liquid chromatography (HPLC) methods utilizing guanosine as a "prosubstrate." After an initial breakdown of the guanosine to guanine using purine nucleoside phosphorylase, the ammonia formed as a result of the breakdown of the guanine by GD was estimated colorimetrically by the Berthelot reaction. As an alternative or a complementary assay, the xanthine also formed was measured using an isocratic HPLC method. These methods are suitable for routine assays for measuring plasma GD over a wide range of activities.  相似文献   
89.
The new substrates 4-thiouridine and 4-thiothymidine were proposed for spectrophotometric measurement of the activity of uridine (UP) and thymidine (TP) phosphorylases. At pH 7.5, 4-thiouridine has an absorbance maximum at 330 nm, and the difference in extinction coefficient () between 4-thiouridine and 4-thiouracil is 3000 –1cm–1. 4-Thiouridine proved to be a good substrate for UP: the Michaelis ( ) and catalytic (k cat) constants were estimated respectively at 130 M and 49 s–1 at 25°C. Even a greater (5000 M–1cm–1 at 336 nm) was observed for the 4-thiothymidine/4-thiothymine pair.  相似文献   
90.
The crystal structure of the modular flavin adenine dinucleotide (FAD) synthetase from Corynebacterium ammoniagenes has been solved at 1.95 Å resolution. The structure of C. ammoniagenes FAD synthetase presents two catalytic modules—a C-terminus with ATP-riboflavin kinase activity and an N-terminus with ATP-flavin mononucleotide (FMN) adenylyltransferase activity—that are responsible for the synthesis of FAD from riboflavin in two sequential steps. In the monomeric structure, the active sites from both modules are placed 40 Å away, preventing the direct transfer of the product from the first reaction (FMN) to the second catalytic site, where it acts as substrate. Crystallographic and biophysical studies revealed a hexameric assembly formed by the interaction of two trimers. Each trimer presents a head-tail configuration, with FMN adenylyltransferase and riboflavin kinase modules from different protomers approaching the active sites and allowing the direct transfer of FMN. Experimental results provide molecular-level evidences of the mechanism of the synthesis of FMN and FAD in prokaryotes in which the oligomeric state could be involved in the regulation of the catalytic efficiency of the modular enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号