首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   7篇
  国内免费   5篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   12篇
  2014年   17篇
  2013年   24篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   11篇
  2008年   20篇
  2007年   7篇
  2006年   8篇
  2005年   9篇
  2004年   7篇
  2003年   7篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有204条查询结果,搜索用时 46 毫秒
41.
The antiviral activity of the type-2 ribosome-inactivating protein (RIP) IRAb from Iris was analyzed by expressing IRAb in tobacco (Nicotiana tabacum L. cv. Samsun NN) plants and challenging the transgenic plants with tobacco mosaic virus (TMV). Although constitutive expression of IRAb resulted in an aberrant phenotype, the plants were fertile. Transgenic tobacco lines expressing IRAb showed a dose-dependent enhanced resistance against TMV infection but the level of protection was markedly lower than in plants expressing IRIP, the type-1 RIP from Iris that closely resembles the A-chain of IRAb. To verify whether IRIP or IRAb can also confer systemic protection against viruses, transgenic RIP-expressing scions were grafted onto control rootstocks and leaves of the rootstocks challenged with tobacco etch virus (TEV). In spite of the strong local antiviral effect of IRIP and IRAb the RIPs could not provide systemic protection against TEV. Hence our results demonstrate that expression of the type-1 and type-2 RIPs from Iris confers tobacco plants local protection against two unrelated viruses. The antiviral activity of both RIPs was not accompanied by an induction of pathogenesis-related proteins. It is suggested that the observed antiviral activity of both Iris RIPs relies on their RNA N-glycohydrolase activity towards TMV RNA and plant rRNA.Abbreviations GUS -Glucuronidase - IRAb Iris agglutinin b - IRIP Iris type-1 RIP - PAG Polynucleotide:adenosine glycosylase - PAP Phytolacca americana antiviral protein - PR Pathogenesis-related - RIP Ribosome-inactivating protein - TCS Trichosanthin - TEV Tobacco etch virus - TMV Tobacco mosaic virus  相似文献   
42.
Human 8-oxoguanine DNA glycosylase (OGG1) excises the mutagenic oxidative DNA lesion 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Kinetic characterization of OGG1 is undertaken to measure the rates of 8-oxoG excision and product release. When the OGG1 concentration is lower than substrate DNA, time courses of product formation are biphasic; a rapid exponential phase (i.e. burst) of product formation is followed by a linear steady-state phase. The initial burst of product formation corresponds to the concentration of enzyme properly engaged on the substrate, and the burst amplitude depends on the concentration of enzyme. The first-order rate constant of the burst corresponds to the intrinsic rate of 8-oxoG excision and the slower steady-state rate measures the rate of product release (product DNA dissociation rate constant, koff). Here, we describe steady-state, pre-steady-state, and single-turnover approaches to isolate and measure specific steps during OGG1 catalytic cycling. A fluorescent labeled lesion-containing oligonucleotide and purified OGG1 are used to facilitate precise kinetic measurements. Since low enzyme concentrations are used to make steady-state measurements, manual mixing of reagents and quenching of the reaction can be performed to ascertain the steady-state rate (koff). Additionally, extrapolation of the steady-state rate to a point on the ordinate at zero time indicates that a burst of product formation occurred during the first turnover (i.e. y-intercept is positive). The first-order rate constant of the exponential burst phase can be measured using a rapid mixing and quenching technique that examines the amount of product formed at short time intervals (<1 sec) before the steady-state phase and corresponds to the rate of 8-oxoG excision (i.e. chemistry). The chemical step can also be measured using a single-turnover approach where catalytic cycling is prevented by saturating substrate DNA with enzyme (E>S). These approaches can measure elementary rate constants that influence the efficiency of removal of a DNA lesion.  相似文献   
43.
We introduced a novel method to clone random DNA fragments independent of ligation reaction. The method involves the generation of long protruding ends on PCR amplification DNA. Both oligonucleotides used for the amplification of the vector DNA carried one uracil residue at the tenth position from the 5′ end and this made the creation of the 3′ protruding ends of linearized vector possible by uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV). 76 groups of annealed oligonucleotides that had ten-nucleotides protruding at 3′-end, which were complementary to those at 3′-end of the linearized vector, were designed. The linearized vector and the annealed oligonucleotide were mixed together to transform E.coli directly without ligation reaction. The number of the clone that grew on the plates had been demonstrated to reach 1 × 105 transformants/μg and 96.1% of transformants harbored the cloned fragments. From the results of transformation, we can confirm that the efficiency of the creation of 3′ protruding ends in our method is high and our cloning method is benefit to produce recombinants easily and efficiently.  相似文献   
44.
45.
The cytosine methyltransferases (MTases) M. HhaIand M. HpaII bind substrates in which the target cytosine is replaced by uracil or thymine, i.e. DNA containing a U:G or a T:G mismatch. We have extended this observation to the EcoRII MTase (M. EcoRII) and determined the apparent Kd for binding. Using a genetic assay we have also tested the possibility that MTase binding to U:G mismatches may interfere with repair of the mismatches and promote C:G to T:A mutations. We have compared two mutants of M. EcoRII that are defective for catalysis by the wild-type enzyme for their ability to bind DNA containing U:G or T:G mismatches and for their ability to promote C to T mutations. We find that although all three proteins are able to bind DNAs with mismatches, only the wild-type enzyme promotes C:G to T:A mutations in vivo. Therefore, the ability of M. EcoRII to bind U:G mismatched duplexes is not sufficient for their mutagenic action in cells. Received: 14 November 1996 / Accepted: 17 February 1997  相似文献   
46.
Despite the importance of DNA repair in protecting the genome, the molecular basis for damage recognition and repair remains poorly understood. In the base excision repair pathway (BER), DNA glycosylases recognize and excise damaged bases from DNA. This review focuses on the recent development of chemical approaches that have been applied to the study of BER enzymes. Several distinctive classes of noncleavable substrate analogs that form stable complexes with DNA glycosylases have recently been designed and synthesized. These analogs have been used for biochemical and structural analyses of protein—DNA complexes involving DNA glycosylases, and for the isolation of a novel DNA glycosylase. An approach to trap covalently a DNA glycosylase-intermediate complex has also been used to elucidate the mechanism of DNA glycosylases.  相似文献   
47.
48.
MUTYH is a base excision repair (BER) enzyme that prevents mutations in DNA associated with 8-oxoguanine (OG) by catalyzing the removal of adenine from inappropriately formed OG:A base-pairs. Germline mutations in the MUTYH gene are linked to colorectal polyposis and a high risk of colorectal cancer, a syndrome referred to as MUTYH-associated polyposis (MAP). There are over 300 different MUTYH mutations associated with MAP and a large fraction of these gene changes code for missense MUTYH variants. Herein, the adenine glycosylase activity, mismatch recognition properties, and interaction with relevant protein partners of human MUTYH and five MAP variants (R295C, P281L, Q324H, P502L, and R520Q) were examined. P281L MUTYH was found to be severely compromised both in DNA binding and base excision activity, consistent with the location of this variation in the iron-sulfur cluster (FCL) DNA binding motif of MUTYH. Both R295C and R520Q MUTYH were found to have low fractions of active enzyme, compromised affinity for damaged DNA, and reduced rates for adenine excision. In contrast, both Q324H and P502L MUTYH function relatively similarly to WT MUTYH in both binding and glycosylase assays. However, P502L and R520Q exhibited reduced affinity for PCNA (proliferation cell nuclear antigen), consistent with their location in the PCNA-binding motif of MUTYH. Whereas, only Q324H, and not R295C, was found to have reduced affinity for Hus1 of the Rad9–Hus1–Rad1 complex, despite both being localized to the same region implicated for interaction with Hus1. These results underscore the diversity of functional consequences due to MUTYH variants that may impact the progression of MAP.  相似文献   
49.
Jian Lu  Yie Liu 《The EMBO journal》2010,29(2):398-409
Telomeres consist of short guanine‐rich repeats. Guanine can be oxidized to 8‐oxo‐7,8‐dihydroguanine (8‐oxoG) and 2,6‐diamino‐4‐hydroxy‐5‐formamidopyrimidine (FapyG). 8‐oxoguanine DNA glycosylase (Ogg1) repairs these oxidative guanine lesions through the base excision repair (BER) pathway. Here we show that in Saccharomyces cerevisiae ablation of Ogg1p leads to an increase in oxidized guanine level in telomeric DNA. The ogg1 deletion (ogg1Δ) strain shows telomere lengthening that is dependent on telomerase and/or Rad52p‐mediated homologous recombination. 8‐oxoG in telomeric repeats attenuates the binding of the telomere binding protein, Rap1p, to telomeric DNA in vitro. Moreover, the amount of telomere‐bound Rap1p and Rif2p is reduced in ogg1Δ strain. These results suggest that oxidized guanines may perturb telomere length equilibrium by attenuating telomere protein complex to function in telomeres, which in turn impedes their regulation of pathways engaged in telomere length maintenance. We propose that Ogg1p is critical in maintaining telomere length homoeostasis through telomere guanine damage repair, and that interfering with telomere length homoeostasis may be one of the mechanism(s) by which oxidative DNA damage inflicts the genome.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号