首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5911篇
  免费   214篇
  国内免费   268篇
  2024年   8篇
  2023年   44篇
  2022年   42篇
  2021年   64篇
  2020年   90篇
  2019年   103篇
  2018年   105篇
  2017年   89篇
  2016年   99篇
  2015年   89篇
  2014年   143篇
  2013年   248篇
  2012年   108篇
  2011年   169篇
  2010年   108篇
  2009年   212篇
  2008年   215篇
  2007年   238篇
  2006年   222篇
  2005年   221篇
  2004年   211篇
  2003年   206篇
  2002年   229篇
  2001年   156篇
  2000年   140篇
  1999年   156篇
  1998年   149篇
  1997年   157篇
  1996年   153篇
  1995年   153篇
  1994年   135篇
  1993年   178篇
  1992年   154篇
  1991年   161篇
  1990年   138篇
  1989年   147篇
  1988年   121篇
  1987年   119篇
  1986年   124篇
  1985年   131篇
  1984年   130篇
  1983年   77篇
  1982年   117篇
  1981年   102篇
  1980年   74篇
  1979年   51篇
  1978年   25篇
  1977年   29篇
  1976年   29篇
  1975年   10篇
排序方式: 共有6393条查询结果,搜索用时 15 毫秒
951.
The demand for monoclonal antibody for therapeutic and diagnostic applications is rising constantly which puts up a need to bring down the cost of its production. In this context it becomes a prerequisite to improve the efficiency of the existing processes used for monoclonal antibody production. This review describes various upstream processes used for monoclonal antibody production and evaluates critical parameters and efforts which are being made to enhance the efficiency of the process. The upstream technology has tremendously been upgraded from host cells used for manufacturing to bioreactors type and capacity. The host cells used range from microbial, mammalian to plant cells with mammalian cells dominating the scenario. Disposable bioreactors are being promoted for small scale production due to easy adaptation to process validation and flexibility, though they are limited by the scale of production. In this respect Wave bioreactors for suspension culture have been introduced recently. A novel bioreactor for immobilized cells is described which permits an economical and easy alternative to hollow fiber bioreactor at lab scale production. Modification of the cellular machinery to alter their metabolic characteristics has further added to robustness of cells and perks up cell specific productivity. The process parameters including feeding strategies and environmental parameters are being improved and efforts to validate them to get reproducible results are becoming a trend. Online monitoring of the process and product characterization is increasingly gaining importance. In total the advancement of upstream processes have led to the increase in volumetric productivity by 100-fold over last decade and make the monoclonal antibody production more economical and realistic option for therapeutic applications.  相似文献   
952.
It is widely recognized that enhancement of protein stability is an important biotechnological goal. However, some applications at least, could actually benefit from stability being strongly dependent on a suitable environment variable, in such a way that enhanced stability or decreased stability could be realized as required. In therapeutic applications, for instance, a long shelf-life under storage conditions may be convenient, but a sufficiently fast degradation of the protein after it has performed the planned molecular task in vivo may avoid side effects and toxicity. Undesirable effects associated to high stability are also likely to occur in food-industry applications. Clearly, one fundamental factor involved here is the kinetic stability of the protein, which relates to the time-scale of the irreversible denaturation processes and which is determined to some significant extent by the free-energy barrier for unfolding (the barrier that "separates" the native state from the highly-susceptible-to-irreversible-alterations nonnative states). With an appropriate experimental model, we show that strong environment-dependencies of the thermodynamic and kinetic stabilities can be achieved using robust protein engineering. We use sequence-alignment analysis and simple computational electrostatics to design stabilizing and destabilizing mutations, the latter introducing interactions between like charges which are screened out at high salt. Our design procedures lead naturally to mutating regions which are mostly unstructured in the transition state for unfolding. As a result, the large salt effect on the thermodynamic stability of our consensus plus charge-reversal variant translates into dramatic changes in the time-scale associated to the unfolding barrier: from the order of years at high salt to the order of days at low salt. Certainly, large changes in salt concentration are not expected to occur in biological systems in vivo. Hence, proteins with strong salt-dependencies of the thermodynamic and kinetic stabilities are more likely to be of use in those cases in which high-stability is required only under storage conditions. A plausible scenario is that inclusion of high salt in liquid formulations will contribute to a long protein shelf-life, while the lower salt concentration under the conditions of the application will help prevent the side effects associated with high-stability which may potentially arise in some therapeutic and food-industry applications. From a more general viewpoint, this work shows that consensus engineering and electrostatic engineering can be readily combined and clarifies relevant aspects of the relation between thermodynamic stability and kinetic stability in proteins.  相似文献   
953.
954.
Motono C  Gromiha MM  Kumar S 《Proteins》2008,71(2):655-669
The cold shock protein (CSP) from hyperthermophile Thermotoga maritima (TmCSP) is only marginally stable (DeltaG(T(opt)) = 0.3 kcal/mol) at 353 K, the optimum environmental temperature (T(opt)) for T. maritima. In comparison, homologous CSPs from E. coli (DeltaG(T(opt)) = 2.2 kcal/mol) and B. subtilis (DeltaG(T(opt)) = 1.5 kcal/mol) are at least five times more stable at 310 K, the T(opt) for the mesophiles. Yet at the room temperature, TmCSP is more stable (DeltaG(T(R)) = 4.7 kcal/mol) than its homologues (DeltaG(T(R)) = 3.0 kcal/mol for E. coli CSP and DeltaG(T(R)) = 2.1 kcal/mol for B. subtilis CSP). This unique observation suggests that kinetic, rather than thermodynamic, barriers toward unfolding might help TmCSP native structure at high temperatures. Consistently, the unfolding rate of TmCSP is considerably slower than its homologues. High temperature (600 K) complete unfolding molecular dynamics (MD) simulations of TmCSP support our hypothesis and reveal an unfolding scheme unique to TmCSP. For all the studied homologues of TmCSP, the unfolding process first starts at the C-terminal region and N-terminal region unfolds in the end. But for TmCSP, both the terminals resist unfolding for consistently longer simulation times and, in the end, unfold simultaneously. In TmCSP, the C-terminal region is better fortified and has better interactions with the N-terminal region due to the charged residues, R2, E47, E49, H61, K63, and E66, being in spatial vicinity. The electrostatic interactions among these residues are unique to TmCSP. Consistently, the room temperature MD simulations show that TmCSP is more rigid at its N- and C-termini as compared to its homologues from E. coli, B. subtilis, and B. caldolyticus.  相似文献   
955.
Excess extracellular glutamate, the main excitatory neurotransmitter, may result in excitotoxicity and neural injury. The present study was designed to study the effect of hydrogen sulfide (H(2)S), a novel neuromodulator, on hydrogen peroxide (H(2)O(2)) -induced glutamate uptake impairment and cellular injuries in primary cultured rat cortical astrocytes. We found that NaHS (an H(2)S donor, 0.1-1000 microM) reversed H(2)O(2)-induced cellular injury in a concentration-dependent manner. This effect was attenuated by L-trans-pyrrolidine-2,4-dicarboxylic (PDC), a specific glutamate uptake inhibitor. Moreover, NaHS significantly increased [(3)H]glutamate transport in astrocytes treated with H(2)O(2), suggesting that H(2)S may protect astrocytes via enhancing glutamate uptake function. NaHS also reversed H(2)O(2)-impaired glutathione (GSH) production. Blockade of glutamate uptake with PDC attenuated this effect, indicating that the effect of H(2)S on GSH production is secondary to the stimulation of glutamate uptake. In addition, it was also found that H(2)S may promote glutamate uptake activity via decreasing ROS generation, enhancing ATP production and suppressing ERK1/2 activation. In conclusion, our findings provide direct evidence that H(2)S has potential therapeutic value for oxidative stress-induced brain damage via a mechanism involving enhancing glutamate uptake function.  相似文献   
956.
Influence of suspended clay on phosphorus uptake by periphyton   总被引:1,自引:0,他引:1  
We investigated the effect of suspended clay upon the phosphorus uptake rate exhibited by lotic periphyton communities. Suspended inorganic clays and periphyton are common to aquatic environments, and both can strongly influence physical and chemical water conditions. We used replicated artificial stream channels to test the prediction that suspended clay particles would affect the uptake of soluble reactive phosphorus (SRP) by periphyton. Commercially available kaolinite and bentonite clays were characterized for their aqueous suspension behavior and affinities for SRP. Periphyton was grown in a recirculating stream system and subjected to simultaneous suspended clay and SRP additions. SRP removal from solution, both in the presence and absence of suspended clays, was used to quantify SRP uptake parameters by periphyton. Clay type and concentrations of 20, 80, and 200 mg l−1 had no significant effect upon SRP uptake rate exhibited by periphyton during three 90-min experiments. Less than 1% of SRP removal was attributable to the suspended clay load or artificial stream construction materials, based on clay isotherm data and material sorption studies, indicating that 99% of SRP removal was attributable to biotic uptake. Removal of SRP (as KH2PO4) was described by a first-order equation with rate constants ranging between 0.02 and 0.14 min−1. Our results suggest that high turbidity conditions caused by suspended mineral clays have little immediate effect upon SRP removal from the water column by periphyton. Handling editor: D. Ryder  相似文献   
957.
Possible non-target effects of the widely used, non-selective herbicide glyphosate were examined in six cyanobacterial strains, and the basis of their resistance was investigated. All cyanobacteria showed a remarkable tolerance to the herbicide up to millimolar levels. Two of them were found to possess an insensitive form of glyphosate target, the shikimate pathway enzyme 5-enol-pyruvyl-shikimate-3-phosphate synthase. Four strains were able to use the phosphonate as the only phosphorus source. Low uptake rates were measured only under phosphorus deprivation. Experimental evidence for glyphosate metabolism was also obtained in strains apparently unable to use the phosphonate. Results suggest that various mechanisms may concur in providing cyanobacterial strains with herbicide tolerance. The data also account for their widespread ability to metabolize the phosphonate. However, such a capability seems limited by low cell permeability to glyphosate, and is rapidly repressed when inorganic phosphate is available.  相似文献   
958.
The development of rice (Oryza sativa L.) cultivars with a higher Zn content in their grains has been suggested as a way to alleviate Zn malnutrition in human populations subsisting on rice in their daily diets. This study was conducted to evaluate the effects of native soil Zn status and fertilizer application on Zn concentrations in grains of five rice genotypes that had previously been identified as either high or low in grain Zn. Genotypes were grown in field trials at four sites ranging in native soil-Zn status from severely deficient to high in plant available Zn. At each site a −Zn plot was compared to a +Zn plot fertilized with 15 kg Zn ha−1. Results showed that native soil Zn status was the dominant factor to determine grain Zn concentrations followed by genotype and fertilizer. Depending on soil-Zn status, grain Zn concentrations could range from 8 mg kg−1 to 47 mg kg−1 in a single genotype. This strong location effect will need to be considered in estimating potential benefits of Zn biofortification. Our data furthermore showed that it was not possible to simply compensate for low soil Zn availability by fertilizer applications. In all soils fertilizer Zn was taken up as seen by a 50–200% increase in total plant Zn content. However, in more Zn deficient soils this additional Zn supply improved straw and grain yield and increased straw Zn concentrations by 43–95% but grain Zn concentrations remained largely unchanged with a maximum increase of 6%. Even in soils with high Zn status fertilizer Zn was predominantly stored in vegetative tissue. Genotypic differences in grain Zn concentrations were significant in all but the severely Zn deficient soil, with genotypic means ranging from 11 to 24 mg kg−1 in a Zn deficient soil and from 34 to 46 mg kg−1 in a high Zn upland soil. Rankings of genotypes remained largely unchanged from Zn deficient to high Zn soils, which suggests that developing high Zn cultivars through conventional breeding is feasible for a range of environments. However, it may be a challenge to develop cultivars that respond to Zn fertilizer with higher grain yield and higher grain Zn concentrations when grown in soils with low native Zn status.  相似文献   
959.
长期施肥对NO3^——N深层积累和土壤剖面中水分分布的影响   总被引:16,自引:4,他引:12  
研究了旱地农业系统中,长期不同施肥条件下,降水对NO3^--N积累、剖面水分分布以及N有收量、回收率影响及其相互之间的关系。结果表明,降水和氮肥施用量显著影响作物产量。施用氮肥在土壤剖面中造成NO3^--N深层积累,其中NPM处理累积层位于60-120cm,累积量相当于3.0年的年度施肥量(120kg·hm^-2),NP处理累积层位于80-140cm,相当于1.4年施肥量。随着降水的年际间波动,进化论在丰水年、平水年还是干旱年,NPM处理耗水量>NP处理>M处理>P,CK处理。12年不同施肥造成了土壤剖面水分差异。冬小麦播种前不同施肥处理0-100cm水分剖面分布差别不大,NPM处理、NP处理(除丰水年外),土壤100-300cm含水量迅速降低,干旱年M处理缓慢降低,P和CK处理在任何年份变化都不大,氮肥回收率随着降水的波动也呈现相应的高低变化,NPM、NP处理的高低波动幅度最大。NPM、NP处理NO3^--N累积与N素回收率的降低、土壤水分亏缺基本吻合。由此也反映了水分-作物-施肥三者之间存在的内在制约关系。  相似文献   
960.
Sea buckthorn (Hippophaë rhamnoides L.) seeds on the 29th, 53rd, 80th, and 107th day after pollination were used for determining, by lipase hydrolysis, the qualitative and quantitative composition of the triacylglycerol (TAG) positional types, groups, and positional species, as well as the factor of selectivity of incorporation of unsaturated fatty acids, octadecenoic, linoleic, and linolenic, into the sn-2-position of TAGs. Until the 80th day after pollination, there was a predominant formation of triunsaturated TAGs, which included linolenic and linoleic acid residues. After the 80th day, the absolute content of these major components of total TAGs markedly decreased, and an increase in total TAG content was mainly accounted for by the rise in the level of those TAG species, which included saturated fatty acids, palmitic and stearic (monosaturated–diunsaturated and disaturated–monounsaturated), as well as in the level of sn-2-octadecenoyl species belonging to the triunsaturated and palmito–diunsaturated types of TAGs. At each maturation stage, the quantitative dynamics of separate TAG species was determined by the content of fatty acid species available for TAG formation and the factor of selectivity of these species. The decrease in the content of a certain group of triunsaturated TAGs found here seems to be caused by their metabolization during seed maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号