首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   34篇
  国内免费   29篇
  565篇
  2023年   12篇
  2022年   9篇
  2021年   7篇
  2020年   13篇
  2019年   13篇
  2018年   20篇
  2017年   11篇
  2016年   19篇
  2015年   16篇
  2014年   26篇
  2013年   24篇
  2012年   11篇
  2011年   22篇
  2010年   32篇
  2009年   29篇
  2008年   21篇
  2007年   35篇
  2006年   32篇
  2005年   18篇
  2004年   22篇
  2003年   14篇
  2002年   24篇
  2001年   14篇
  2000年   8篇
  1999年   7篇
  1998年   8篇
  1997年   8篇
  1996年   10篇
  1995年   5篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1986年   1篇
  1984年   7篇
  1983年   10篇
  1982年   4篇
  1981年   8篇
  1980年   4篇
  1979年   5篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
排序方式: 共有565条查询结果,搜索用时 0 毫秒
561.
Summary A temperature-sensitive mutant (dna-11) with the phenotype of a mutant defective in the initiation of DNA replication, was isolated from an Hfr-like FP2 donor of Pseudomonas aeruginosa. Reversion of its temperature-sensitive character was achieved by integrative suppression rather than by backmutation or an additional suppressor mutation. The dna-11 mutant proved to be helpful in stabilizing the Hfr status of the original host.  相似文献   
562.
Chronic ethanol ingestion, achieved by feeding ethanol at a constant rate using intragastric tube feeding, alters the expression of genes in the liver. This is done by epigenetic mechanisms, which depend on the blood alcohol levels at the time of killing. However, acute bolus feeding of ethanol changes gene expression without lasting epigenetic changes. This occurs with histone 3 methylation and acetylation modifications. The gene expression response to an acute bolus of ethanol might be modified by feeding S-adenosylmethionine (SAMe), a methyl donor. In the present study, rats were given a bolus of ethanol (6 g/kg body weight (bw), SAMe (1 g/kg bw), ethanol + SAMe, or isocaloric glucose. The group of rats (n = 3) were killed at 3 and 12 h post bolus, and gene microarray analysis was performed on their liver cells. SAMe reduced the 3 h blood ethanol levels and increased the ALT levels at 3 h. Venn diagrams showed that alcohol changed the expression of 646 genes at 3 h post bolus and 586 genes at 12 h. SAMe changed the expression of 1,012 genes when fed with ethanol 3 h post ethanol bolus and 554 genes at 12 h post ethanol bolus. SAMe alone changed the expression of 1,751 genes at 3 h and 1,398 at 12 h. There were more changes in gene expression at 3 h than at 12 h post ethanol when ethanol alone was compared to the dextrose control. The same was true when SAMe was compared to SAMe + ethanol. Ethanol up regulated gene expression in most functional pathways at 3 h. However, when SAMe was fed with ethanol at 3 h, most pathways were down regulated. At 12 h, however, when ethanol was fed, the pathways were half up regulated and half down regulated. The same was true when SAMe + ethanol was fed. The expression of epigenetically important genes, such as BHMT and Foxn3, was up regulated 3 h post alcohol bolus. At 3 h, SAMe down regulated the expression of genes, such as BHMT, Mat2a, Jun, Tnfrs9, Ahcy 1, Tgfbr1 and 2, and Pcaf. At 12 h, the insulin signaling pathways were half down regulated by ethanol, which was partly prevented by SAMe. The MAPK pathway was up regulated by ethanol, but SAMe did not prevent this. In conclusion, profound changes in gene expression evolved between 3 h and 12 post ethanol bolus. SAMe down regulated these changes in gene expression at 3 h, and less so at 12 h.  相似文献   
563.
The carboxylesterase Notum is a key negative regulator of the Wnt signaling pathway by mediating the depalmitoleoylation of Wnt proteins. Our objective was to discover potent small molecule inhibitors of Notum suitable for exploring the regulation of Wnt signaling in the central nervous system. Scaffold-hopping from thienopyrimidine acids 1 and 2, supported by X-ray structure determination, identified 3-methylimidazolin-4-one amides 2024 as potent inhibitors of Notum with activity across three orthogonal assay formats (biochemical, extra-cellular, occupancy). A preferred example 24 demonstrated good stability in mouse microsomes and plasma, and cell permeability in the MDCK-MDR1 assay albeit with modest P-gp mediated efflux. Pharmacokinetic studies with 24 were performed in vivo in mouse with single oral administration of 24 showing good plasma exposure and reasonable CNS penetration. We propose that 24 is a new chemical tool suitable for cellular studies to explore the fundamental biology of Notum.  相似文献   
564.
An unusual dip (compared to higher plant behaviour under comparable light conditions) in chlorophyll fluorescence induction (FI) at about 0.2-2 s was observed for thalli of several lichen species having Trebouxia species (the most common symbiotic green algae) as their native photobionts and for Trebouxia species cultured separately in nutrient solution. This dip appears after the usual O(J)IP transient at a wide range of excitation light intensities (100-1800 μmol photons m−2 s−1). Simultaneous measurements of FI and 820-nm transmission kinetics (I820) with lichen thalli showed that the decreasing part of the fluorescence dip (0.2-0.4 s) is accompanied by a decrease of I820, i.e., by a reoxidation of electron carriers at photosystem I (PSI), while the subsequent increasing part (0.4-2 s) of the dip is not paralleled by the change in I820. These results were compared with that measured with pea leaves—representatives of higher plants. In pea, PSI started to reoxidize after 2-s excitation. The simultaneous measurements performed with thalli treated with methylviologen (MV), an efficient electron acceptor from PSI, revealed that the narrow P peak in FI of Trebouxia-possessing lichens (i.e., the I-P-dip phase) gradually disappeared with prolonged MV treatment. Thus, the P peak behaves in a similar way as in higher plants where it reflects a traffic jam of electrons induced by a transient block at the acceptor side of PSI. The increasing part of the dip in FI remained unaffected by the addition of MV. We have found that the fluorescence dip is insensitive to antimycin A, rotenone (inhibitors of cyclic electron flow around PSI), and propyl gallate (an inhibitor of plastid terminal oxidase). The 2-h treatment with 5 μM nigericin, an ionophore effectively dissipating the pH-gradient across the thylakoid membrane, did not lead to significant changes either in FI nor I820 kinetics. On the basis of the presented results, we suggest that the decreasing part of the fluorescence dip in FI of Trebouxia-lichens reflects the activation of ferredoxin-NADP+-oxidoreductase or Mehler-peroxidase reaction leading to the fast reoxidation of electron carriers in thylakoid membranes. The increasing part of the dip probably reflects a transient reduction of plastoquinone (PQ) pool that is not associated with cyclic electron flow around PSI. Possible causes of this MV-insensitive PQ reduction are discussed.  相似文献   
565.
Henk Vasmel  Jan Amesz 《BBA》1983,724(1):118-122
Photochemically active reaction centers were isolated from the facultatively aerobic gliding green bacterium Chloroflexus aurantiacus. The absorption difference spectrum, obtained after a flash, reflected the oxidation of P-865, the primary donor, and agreed with that observed in a purified membrane preparation from the same organism (Bruce, B.D., Fuller, R.C. and Blankenship, R.E. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 6532–6536). By analysis of the kinetics in the presence of reduced N-methylphenazonium methosulfate to prevent accumulation of oxidized P-865, the absorption difference spectrum of an electron acceptor was obtained. The electron acceptor was identified as menaquinone (vitamin K-2), which is reduced to the semiquinone anion in a stoichiometry of approximately one molecule per reaction center. Reduction of menaquinone was accompanied by changes in pigment absorption in the infrared region. Our results indicate that the electron-acceptor chain of C. aurantiacus is very similar to that of purple bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号