首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   14篇
  国内免费   23篇
  2023年   2篇
  2022年   4篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2016年   4篇
  2015年   4篇
  2014年   17篇
  2013年   17篇
  2012年   9篇
  2011年   17篇
  2010年   13篇
  2009年   17篇
  2008年   22篇
  2007年   23篇
  2006年   11篇
  2005年   22篇
  2004年   15篇
  2003年   11篇
  2002年   11篇
  2001年   17篇
  2000年   4篇
  1999年   8篇
  1998年   5篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   9篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1977年   2篇
排序方式: 共有336条查询结果,搜索用时 765 毫秒
41.
AIMS: To examine whether incubation of Escherichia coli in nondisinfected drinking water result in development of cells that are not detectable using standard procedures but maintain a potential for metabolic activity and cell division. METHODS AND RESULTS: Survival and detectability of four different E. coli strains were studied using drinking water microcosms and samples from contaminated drinking water wells. Recovery of E. coli was compared using different cultivation-dependent methods, fluorescence in situ hybridization (FISH) using specific oligonucleotide probes, direct viable counts (DVC), and by enumeration of gfp-tagged E. coli (green fluorescent protein, GFP). Two levels of stress responses were observed after incubation of E. coli in nondisinfected drinking water: (i) the presence of cells that were not detected using standard cultivation methods but could be cultivated after gentle resuscitation on nonselective nutrient-rich media, and (ii) the presence of cells that responded to nutrient addition but could only be detected by cultivation-independent methods (DVC, FISH and GFP). Collectively, the experiments demonstrated that incubation for 20-60 days in nondisinfected drinking water resulted in detection of only 0.7-5% of the initial E. coli population using standard cultivation methods, whereas 1-20% could be resuscitated to a culturable state, and 17-49% could be clearly detected using cultivation-independent methods. CONCLUSIONS: Resuscitation of stressed E. coli on nonselective nutrient-rich media increased cell counts in drinking water using both traditional (CFU), and cultivation-independent methods (DVC, FISH and GFP). The cultivation-independent methods resulted in detection of 10-20 times more E. coli than the traditional methods. The results indicate that a subpopulation of substrate-responsive but apparent nonculturable E. coli may develop in drinking water during long-term starvation survival. SIGNIFICANCE AND IMPACT OF THE STUDY: The existence of substrate-responsive but nonculturable cells should be considered when evaluating the survival potential of E. coli in nondisinfected drinking water.  相似文献   
42.
In the purple membrane (PM) of halobacteria, lipids stabilize the trimeric arrangement of bacteriorhodopsin (BR) molecules and mediate the packing of the trimers in a regular crystalline arrangement. To date, the identification and quantification of these lipids has been based either on lipid extraction procedures or structural models. By directly solubilizing PMs from Halobacterium salinarum in aqueous detergent solutions (SDS or Triton X-100), we avoided any separation or modification steps that might modify the lipid composition or even the lipid molecules themselves. Our analysis of integral PM preparations should resolve partially conflicting literature data on the lipid composition of the PM. Using 31P and 1H NMR of detergent-solubilized but otherwise untreated samples, we found two glycolipids and 6.4 +/- 0.1 phospholipids per BR molecule, 4.4 +/- 0.1 of the latter being the phosphatidylglycerophosphate methyl ester. The only glycolipid detected was S-TGD-1. For an additional glycolipid, glycocardiolipin, that was recently identified in lipid extracts, we show that it was produced mainly during the lipid extraction procedure but also was partially dependent on the preparation of the PM suspensions.  相似文献   
43.
The molecular forces that stabilize membrane protein structure are poorly understood. To investigate these forces we introduced alanine substitutions at 24 positions in the B helix of bacteriorhodopsin and examined their effects on structure and stability. Although most of the results can be rationalized in terms of the folded structure, there are a number of surprises. (1) We find a remarkably high frequency of stabilizing mutations (17%), indicating that membrane proteins are not highly optimized for stability. (2) Helix B is kinked, with the kink centered around Pro50. The P50A mutation has no effect on stability, however, and a crystal structure reveals that the helix remains bent, indicating that tertiary contacts dominate in the distortion of this helix. (3) We find that the protein is stabilized by about 1kcal/mol for every 38A(2) of surface area buried, which is quite similar to soluble proteins in spite of their dramatically different environments. (4) We find little energetic difference, on average, in the burial of apolar surface or polar surface area, implying that van der Waals packing is the dominant force that drives membrane protein folding.  相似文献   
44.
The predicted Exigobacterium sibiricum bacterirhodopsin gene was amplified from an ancient Siberian permafrost sample. The protein bacteriorhodopsin from Exiguobacterium sibiricum (ESR) encoded by this gene was expressed in Escherichia coli membrane. ESR bound all-trans-retinal and displayed an absorbance maximum at 534 nm without dark adaptation. The ESR photocycle is characterized by fast formation of an M intermediate and the presence of a significant amount of an O intermediate. Proteoliposomes with ESR incorporated transport protons in an outward direction leading to medium acidification. Proton uptake at the cytoplasmic surface of these organelles precedes proton release and coincides with M decay/O rise of the ESR.  相似文献   
45.
Nishida T  Orikasa Y  Ito Y  Yu R  Yamada A  Watanabe K  Okuyama H 《FEBS letters》2006,580(11):2731-2735
The colony-forming ability of Escherichia coli genetically engineered to produce eicosapentaenoic acid (EPA) grown in 3mM hydrogen peroxide (H(2)O(2)) was similar to that of untreated cells. It was rapidly lost in the absence of EPA. H(2)O(2)-induced protein carbonylation was enhanced in cells lacking EPA. The fatty acid composition of the transformants was unaffected by H(2)O(2) treatment, but the amount of fatty acids decreased in cultures of cells lacking EPA and increased in cultures of cells producing EPA, suggesting that cellular EPA is stable in the presence of H(2)O(2) in vivo and may protect cells directly against oxidative damage. We discuss the possible role of EPA in partially blocking the penetration of H(2)O(2) into cells through membranes containing EPA.  相似文献   
46.
Viable but nonculturable (VBNC) Vibrio cholerae non-O1/non-O139, V. parahaemolyticus, enterohemorrhagic Escherichia coli, enterotoxigenic E. coli, enteropathogenic E. coli, Shigella flexneri, and Salmonella enterica were converted to the culturable state by co-culture with selected eukaryotic cells, e.g., HT-29, Caco-2, T84, HeLa, Intestine 407, and CHO cells.  相似文献   
47.
Aims:  To assess the stability of 16S rRNA of viable but nonculturable (VBNC) probiotics during storage when compared with different attributes of viability.
Methods and Results:  Levels of RNA of the probiotic strains Bifidobacterium longum 46, B. longum 2C and B. animalis subsp. lactis Bb-12 were monitored during storage in fermented and nonfermented foods. Cells which gradually lost their culturability in fermented products retained high level of rRNA, whereas rRNA of acid-killed control cells decreased at faster rate. Furthermore, the viability of B. longum 2C was monitored during storage by measuring changes in reductase activity, cytoplasmic membrane integrity and esterase activity using a flow cytometer. All of the culture-independent viability assays suggested that the cells remained viable during storage. In nonfermented media, the observed losses in culturability were smaller, and the changes in cell counts were comparable with the changes in rRNA levels.
Conclusions:  Viable but nonculturable probiotics maintain high levels of rRNA and retain properties of viable bacteria including reductase activity. Quantification of 16S rRNA complements culture-independent viability assays.
Significance and Impact of the Study:  Culture-independent viability assays allow the detection of VBNC probiotics, and can be used parallel to conventional culture-dependent methods to obtain accurate information on probiotic viability.  相似文献   
48.
Aims: To optimize and evaluate fluorescence microscopy assays for specific assessment of mycobacteria and co‐contaminants, including culturable and non‐culturable sub‐populations, in metalworking fluids (MWF). Methods and Results: Auramine‐O‐rhodamine (AR) staining and LIVE/DEAD BacLight? Bacterial Viability staining (L/D staining) were adapted and evaluated for detection/quantification and differentiation (viable vs non‐viable) of the MWF‐associated mycobacteria and the background bacterial flora, respectively. The AR staining method was found to be specific to MWF mycobacteria with a minimum detection limit of 10 cells ml?1 and was comparable to the QPCR in quantification efficiency in MWF matrix. The L/D staining‐based microscopy allowed differential quantification of viable vs non‐viable cells. In general, a 3‐log difference was observed between the L/D microscopy count and culture count accounting for the presence of non‐culturable fraction in the bacterial population in in‐use MWF. Conclusions: The optimized AR staining‐ and the L/D staining‐based microscopy methods have the potential for rapid, specific and differential assessment (viable vs non‐viable) of MWF‐associated mycobacteria and co‐contaminants in field MWF. Significance and Impact of the study: Early detection of MWF mycobacteria by rapid, low‐cost, less‐skill intensive and culture‐independent fluorescence‐based microscopy methods will facilitate timely intervention to protect the machine workers from occupational hazards.  相似文献   
49.
Proline residues play a fundamental and subtle role in the dynamics, structure, and function in many membrane proteins. Temperature derivative spectroscopy and differential scanning calorimetry have been used to determine the effect of proline substitution in the structural stability of the active site and transmembrane arrangement of bacteriorhodopsin. We have analyzed the Pro-to-Ala mutation for the helix-embedded prolines Pro50, Pro91, and Pro186 in the native membrane environment. This information has been complemented with the analysis of the respective crystallographic structures by the FoldX force field. Differential scanning calorimetry allowed us to determine distorted membrane arrangement for P50A and P186A. The protein stability was severely affected for P186A and P91A. In the case of Pro91, a single point mutation is capable of strongly slowing down the conformational diffusion along the denaturation coordinate, becoming a barrier-free downhill process above 371 K. Temperature derivative spectroscopy, applied for first time to study thermal stability of proteins, has been used to monitor the stability of the active site of bacteriorhodopsin. The mutation of Pro91 and Pro186 showed the most striking effects on the retinal binding pocket. These residues are the Pro in closer contact to the active site (activation energies for retinal release of 60.1 and 76.8 kcal/mol, respectively, compared to 115.8 kcal/mol for WT). FoldX analysis of the protein crystal structures indicates that the Pro-to-Ala mutations have both local and long-range effects on the structural stability of residues involved in the architecture of the protein and the active site and in the proton pumping function. Thus, this study provides a complete overview of the substitution effect of helix-embedded prolines in the thermodynamic and dynamic stability of a membrane protein, also related to its structure and function.  相似文献   
50.
13C and (31)P NMR spectra of a transmembrane peptide, [1-(13)C]Ala(14)-labeled A(6-34), of bacteriorhodopsin incorporated into dimyristoylphosphatidylcholine (DMPC) bilayer were recorded to clarify its dynamics and orientation in the lipid bilayer. This peptide is shown to take an alpha-helical form both in liquid crystalline and gel phases, as viewed from the conformation dependent (13)C chemical shifts. In addition, this peptide undergoes rapid rigid-body rotation about the helical axis at ambient temperature as viewed from the axially symmetric (13)C chemical shift anisotropy, whereas this symmetric anisotropy is changed to an asymmetric pattern at temperatures below 10 degrees C. We further incorporated the peptide into the spontaneously aligned DMPC bilayer to applied magnetic field, induced by dynorphin (dynorphin:DMPC =1:10), a heptadeca-opioid peptide with very high affinity to opioid receptor, in order to gain insight into its orientation in the bilayer. This magnetically aligned system turned out to be persistent even at 0 degrees C as viewed from (31)P NMR spectra of the lipid bilayer, after this peptide was incorporated into this system [A(6-34): dynorphin: DMPC = 4:10:100]. It was found from the (13)C NMR spectra of [1-(13)C]Ala(14) A(6-34) that the helical axis of A(6-34) is oriented parallel to the bilayer normal irrespective of the presence or absence of reorientation motion about the helical axis at a temperature above the lowered gel to liquid crystalline phase transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号