首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   804篇
  免费   70篇
  国内免费   118篇
  992篇
  2024年   10篇
  2023年   12篇
  2022年   13篇
  2021年   30篇
  2020年   31篇
  2019年   45篇
  2018年   26篇
  2017年   41篇
  2016年   31篇
  2015年   27篇
  2014年   37篇
  2013年   44篇
  2012年   20篇
  2011年   70篇
  2010年   18篇
  2009年   45篇
  2008年   50篇
  2007年   43篇
  2006年   34篇
  2005年   35篇
  2004年   31篇
  2003年   28篇
  2002年   38篇
  2001年   42篇
  2000年   33篇
  1999年   28篇
  1998年   19篇
  1997年   23篇
  1996年   10篇
  1995年   12篇
  1994年   17篇
  1993年   13篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1978年   2篇
  1958年   1篇
排序方式: 共有992条查询结果,搜索用时 31 毫秒
61.
黑河中游湿地景观破碎化过程及其驱动力分析   总被引:9,自引:0,他引:9  
赵锐锋  姜朋辉  赵海莉  樊洁平 《生态学报》2013,33(14):4436-4449
在遥感和GIS技术支持下,基于1975-2010年长时间序列遥感影像,选取斑块密度指数(PD)、景观内部生境面积指数(IA)、斑块平均面积指数(MPS)、斑块形状破碎化指数(FS1、FS2)等具有典型生态意义的景观指数模型,系统分析了黑河中游湿地景观的破碎化过程,并结合灰色关联分析、主成分分析等方法,探讨了影响研究区湿地景观破碎化过程的各驱动因子.结果表明:近35年来,研究区湿地景观破碎化主要表现为斑块平均面积的萎缩,斑块密度的上升以及斑块形状破碎化指数的增大.整个研究时段内,研究区湿地斑块平均面积减少了48.95hm2,斑块密度的上升0.006个/hm2;导致黑河中游湿地景观破碎化发生和发展的驱动力包含自然和人文两个方面.自然因子对湿地景观破碎化进程的影响则主要体现在气温和降水上,而且气温对湿地景观破碎化进程的影响程度明显大于降水.但在1975-2010年间的这一较小时间尺度上,人类活动对湿地景观破碎化的贡献率明显高于自然因子,人类活动能力的增强以及影响范围的不断扩大是引发黑河中游湿地景观破碎化的主因.  相似文献   
62.
Sea level rise (SLR) threatens coastal wetlands worldwide, yet the fate of individual wetlands will vary based on local topography, wetland morphology, sediment dynamics, hydrologic processes, and plant‐mediated feedbacks. Local variability in these factors makes it difficult to predict SLR effects across wetlands or to develop a holistic regional perspective on SLR response for a diversity of wetland types. To improve regional predictions of SLR impacts to coastal wetlands, we developed a model that addresses the scale‐dependent factors controlling SLR response and accommodates different levels of data availability. The model quantifies SLR‐driven habitat conversion within wetlands across a region by predicting changes in individual wetland hypsometry. This standardized approach can be applied to all wetlands in a region regardless of data availability, making it ideal for modeling SLR response across a range of scales. Our model was applied to 105 wetlands in southern California that spanned a broad range of typology and data availability. Our findings suggest that if wetlands are confined to their current extents, the region will lose 12% of marsh habitats (vegetated marsh and unvegetated flats) with 0.6 m of SLR (projected for 2050) and 48% with 1.7 m of SLR (projected for 2100). Habitat conversion was more drastic in wetlands with larger proportions of marsh habitats relative to subtidal habitats and occurred more rapidly in small lagoons relative to larger sites. Our assessment can inform management of coastal wetland vulnerability, improve understanding of the SLR drivers relevant to individual wetlands, and highlight significant data gaps that impede SLR response modeling across spatial scales. This approach augments regional SLR assessments by considering spatial variability in SLR response drivers, addressing data gaps, and accommodating wetland diversity, which will provide greater insights into regional SLR response that are relevant to coastal management and restoration efforts.  相似文献   
63.
基于PSR模型的凌河口湿地生态系统健康评价与预警研究   总被引:4,自引:0,他引:4  
徐浩田  周林飞  成遣 《生态学报》2017,37(24):8264-8274
凌河口湿地自然保护区是辽河流域主要的湿地保护区域。选取1995年、2000年、2005年、2009年和2014年TM影像作为研究的数据源,在3S技术平台支撑下构建了凌河口湿地空间信息数据库,获取了5个时期的景观格局指数。运用PSR数学模型,从压力、状态、响应3个方面选取10个评价指数,构建了凌河口湿地生态系统健康评价指标体系;采用AHP方法确定各项指标权重指数,应用逻辑斯蒂增长模型(Logistic growth model)对各个单项指标进行单因子评价,最后用计算CEI的综合评价法对5个时期湿地的生态健康情况进行综合评价。结果表明:1995年、2000年生态系统健康指数为0.642、0.617,凌河口湿地生态系统状态为比较健康;2005年、2009年和2014年生态健康指数为0.524、0.436和0.405,凌河口湿地生态系统处于亚健康的状态,应及时采取措施对该研究区进行生态系统保护。最后通过选取基于灰色系统理论的预测模型,构建凌河口湿地生态健康预测模型GM(1,1),对模型进行精度检验,发现灰色绝对关联度、后验差比值和小误差概率的精度检验等级均为一级,预测模型精度较为理想,因此采用GM(1,1)模型对凌河口湿地进行生态系统健康预测研究。预测结果表明:未来20年的湿地生态健康值分别为:0.357、0.321、0.291、0.267,研究区处于一般病态,并有向病态发展的趋势,生态健康面临愈来愈严重的威胁,对湿地进行保护和管理刻不容缓。  相似文献   
64.
大型人工湿地生态可持续性评价   总被引:3,自引:0,他引:3  
张依然  王仁卿  张建  刘建 《生态学报》2012,32(15):4803-4810
大型人工湿地现已广泛应用于湖滨带、河滨带水质净化及湿地生态修复,这些人工湿地的生态可持续性评价对于其科学管理调控及长期可持续运行具有重要意义。运用综合指标评价及层次分析法,根据人工湿地生态系统的特点,提出并建立了适合评价人工湿地可持续性运行的指标体系,建立的评价指标包括生态特征与功能、水质净化功能及经济社会功能三项一级指标,及对应的14个二级指标。运用建立的评价指标体系对南四湖湖滨带新薛河大型人工湿地示范工程的生态可持续性运行了评价,评价结果显示:植物多样性、氨氮去除能力、生物入侵抵抗力、野生动物栖息地、COD去除能力是影响大型人工湿地运行效果的主要制约因素;新薛河人工湿地生态可持续性综合指数为0.6862,处于"良"级,其中生态特征功能可持续性指数最高,为0.7732;水质净化功能和社会经济功能指数分别为0.6190,0.6492。由结果可知,南四湖新薛河大型人工湿地具有重要的生态修复功能,水质净化功能方面应加强植物定期收割及植被管理,同时经济社会功能还有待加强,植物经济效益及旅游娱乐效益还有待深入开发。建立的人工湿地可持续性运行的评价指标体系具有较强的针对性,可用于其他大型人工湿地的生态可持续性评价。  相似文献   
65.
The world's freshwater biotas are declining in diversity, range and abundance, more than in other realms, with human appropriation of water. Despite considerable data on the distribution of dams and their hydrological effects on river systems, there are few expansive and long analyses of impacts on freshwater biota. We investigated trends in waterbird communities over 32 years, (1983–2014), at three spatial scales in two similarly sized large river basins, with contrasting levels of water resource development, representing almost a third (29%) of Australia: the Murray–Darling Basin and the Lake Eyre Basin. The Murray–Darling Basin is Australia's most developed river basin (240 dams storing 29,893 GL) while the Lake Eyre Basin is one of the less developed basins (1 dam storing 14 GL). We compared the long‐term responses of waterbird communities in the two river basins at river basin, catchment and major wetland scales. Waterbird abundances were strongly related to river flows and rainfall. For the developed Murray–Darling Basin, we identified significant long‐term declines in total abundances, functional response groups (e.g., piscivores) and individual species of waterbird (n = 50), associated with reductions in cumulative annual flow. These trends indicated ecosystem level changes. Contrastingly, we found no evidence of waterbird declines in the undeveloped Lake Eyre Basin. We also modelled the effects of the Australian Government buying up water rights and returning these to the riverine environment, at a substantial cost (>3.1 AUD billion) which were projected to partly (18% improvement) restore waterbird abundances, but projected climate change effects could reduce these benefits considerably to only a 1% or 4% improvement, with respective annual recovery of environmental flows of 2,800 GL or 3,200 GL. Our unique large temporal and spatial scale analyses demonstrated severe long‐term ecological impact of water resource development on prominent freshwater animals, with implications for global management of water resources.  相似文献   
66.
We analyzed data from Section 404 permits issued in California from January 1971 through November 1987 that involved impacts to wetlands and required compensatory mitigation (wetland creation, restoration, or preservation). The purpose of this study was to determine patterns and trends in permitting activity and to document cumulative effects of associated management decisions on the California wetland resource. The 324 permits examined documented that 387 compensatory wetlands (1255.9 ha) were required as mitigation for impacts to 368 wetlands (1176.3 ha). The utility of the data on wetland area was limited, however, since 38.0% of the impacted wetlands and 41.6% of the compensatory wetlands lacked acreage data. The wetland type most frequently impacted (37.8% of impacted wetlands) and used in compensation (38.2% of compensatory wetlands) was palustrine forested wetlands. Estuarine intertidal emergent wetlands had the most area impacted (52.3%) and compensated (62.5%). The majority of the wetlands were small (less than or equal to 4.0 ha in size). Wildlife habitat was the most frequently listed function of impacted wetlands (90.7% of the permits) and objective of compensatory wetlands (83.3%). Endangered species were listed as affected in 20.4% of impacted and 21.0% of compensatory projects. The number of permits requiring compensatory mitigation and the number of impacted and compensatory wetlands increased from 1971 to 1986.Documentation of the details of Section 404 permit decisions was inadequate for the permits we examined. Area information and specific locations of impacted and compensatory wetlands were lacking or of poor quality. Follow-up information was also inadequate. For example, project completion dates were specified in the permit for only 2.2% of compensatory wetlands. Furthermore, less than one-third (31.5%) of the permits required the compensatory wetland to be monitored by at least one site visit. We recommend improved documentation, regular reporting, and increased monitoring for better evaluation of the Section 404 permitting system.  相似文献   
67.
Wetlands are important providers of ecosystem services and key regulators of climate change. They positively contribute to global warming through their greenhouse gas emissions, and negatively through the accumulation of organic material in histosols, particularly in peatlands. Our understanding of wetlands’ services is currently constrained by limited knowledge on their distribution, extent, volume, interannual flood variability and disturbance levels. We present an expert system approach to estimate wetland and peatland areas, depths and volumes, which relies on three biophysical indices related to wetland and peat formation: (1) long‐term water supply exceeding atmospheric water demand; (2) annually or seasonally water‐logged soils; and (3) a geomorphological position where water is supplied and retained. Tropical and subtropical wetlands estimates reach 4.7 million km2 (Mkm2). In line with current understanding, the American continent is the major contributor (45%), and Brazil, with its Amazonian interfluvial region, contains the largest tropical wetland area (800,720 km2). Our model suggests, however, unprecedented extents and volumes of peatland in the tropics (1.7 Mkm2 and 7,268 (6,076–7,368) km3), which more than threefold current estimates. Unlike current understanding, our estimates suggest that South America and not Asia contributes the most to tropical peatland area and volume (ca. 44% for both) partly related to some yet unaccounted extended deep deposits but mainly to extended but shallow peat in the Amazon Basin. Brazil leads the peatland area and volume contribution. Asia hosts 38% of both tropical peat area and volume with Indonesia as the main regional contributor and still the holder of the deepest and most extended peat areas in the tropics. Africa hosts more peat than previously reported but climatic and topographic contexts leave it as the least peat‐forming continent. Our results suggest large biases in our current understanding of the distribution, area and volumes of tropical peat and their continental contributions.  相似文献   
68.
69.
Climate change is more pronounced at high northern latitudes, and may be affecting the physical, chemical, and biological attributes of the abundant wetlands in boreal forests. On the Yukon Flats, located in the boreal forest of northeast Alaska, wetlands originally sampled during 1985–1989 were re-sampled for water chemistry and macroinvertebrates in summer 2001–2003. Wetlands sampled lost on average 19% surface water area between these periods. Total nitrogen and most metal cations (Na, Mg, and Ca, but not K) increased between these periods, whereas total phosphorus and chlorophyll a (Chl a) declined. These changes were greater in wetlands that had experienced more drying (decreased surface area). Compared with 1985–1989, densities of cladocerans, copepods, and ostracods in both June and August were much higher in 2002–2003, whereas densities of amphipods, gastropods, and chironomid larvae were generally lower. In comparisons among wetlands in 2002–2003 only, amphipod biomass was lower in wetlands with lower Chl a, which might help explain the decline of amphipods since the late 1980s when Chl a was higher. The decline in Chl a corresponded to greatly increased zooplankton density in June, suggesting a shift in carbon flow from scrapers and deposit-feeders to water-column grazers. Declines in benthic and epibenthic deposit-feeding invertebrates suggest important food web effects of climate change in otherwise pristine wetlands of the boreal forest. Handling editor: R. Bailey  相似文献   
70.
Wastewater treatment at the Houghton lake wetland: Soils and sediments   总被引:2,自引:2,他引:0  
This paper describes the sediment and soils responses in a very long-running study of the capacity of a natural peatland to remove nutrients from treated wastewater. Data are here presented and analyzed from three decades of full-scale operation (1978–2007), during which large changes in the wetland soils occurred. An average of 600,000 m3 y−1 of treated water was discharged each warm season to the Porter Ranch peatland near the community of Houghton Lake, Michigan. This discharge was seasonal, commencing no sooner than May 1 and ending no later than October 31. During the winter half-year, treated wastewater was stored at the lagoon site. This water contained 3.5 mg/L of total phosphorus, and 7 mg/L of dissolved inorganic nitrogen. Nutrients were stored in the 100 ha irrigation area, which removed 94% of the phosphorus (53 t) and 95% of the dissolved inorganic nitrogen. Phosphorus was stored in new biomass, increased soil sorption, and accretion of new soils and sediments, with accretion being dominant. Peat probings, water level increases and topographical surveys established quantitative measures of soil accretion. Over 30 cm of new soil developed, in which nutrient storage occurred. Phosphorus concentrations in the new soil were approximately 2000 mg P/kg, and the nitrogen concentration was 2–3%DW. The removal of TSS was effective, but minor in comparison to the internal generation and cycling of produced particulates. Later in the project history, the interior portion of impacted area became a floating mat. Sedimentation processes then occurred with no exposure to above-mat detrital processes. Trace element analyses showed no appreciable accumulation of heavy metals, other than the calcium and iron that characterized the antecedent wetland and the incoming water. Biomass cycling models were found to produce reasonable estimates of the measured nutrient accumulations. The light loadings of nutrients to this system produced dramatic effects in the ecosystem, but were lower than the range seen in some other treatment wetlands. Insufficient nitrogen was added to support the new biomass, and nitrogen fixation was identified as a possible compensatory mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号