全文获取类型
收费全文 | 1533篇 |
免费 | 376篇 |
国内免费 | 370篇 |
专业分类
2279篇 |
出版年
2024年 | 14篇 |
2023年 | 45篇 |
2022年 | 37篇 |
2021年 | 55篇 |
2020年 | 104篇 |
2019年 | 123篇 |
2018年 | 117篇 |
2017年 | 138篇 |
2016年 | 106篇 |
2015年 | 118篇 |
2014年 | 101篇 |
2013年 | 121篇 |
2012年 | 67篇 |
2011年 | 76篇 |
2010年 | 53篇 |
2009年 | 83篇 |
2008年 | 81篇 |
2007年 | 70篇 |
2006年 | 89篇 |
2005年 | 71篇 |
2004年 | 64篇 |
2003年 | 52篇 |
2002年 | 52篇 |
2001年 | 37篇 |
2000年 | 45篇 |
1999年 | 29篇 |
1998年 | 50篇 |
1997年 | 21篇 |
1996年 | 27篇 |
1995年 | 29篇 |
1994年 | 16篇 |
1993年 | 15篇 |
1992年 | 23篇 |
1991年 | 17篇 |
1990年 | 18篇 |
1989年 | 14篇 |
1988年 | 14篇 |
1987年 | 18篇 |
1986年 | 13篇 |
1985年 | 9篇 |
1984年 | 7篇 |
1983年 | 4篇 |
1982年 | 17篇 |
1981年 | 5篇 |
1980年 | 4篇 |
1979年 | 4篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1958年 | 3篇 |
排序方式: 共有2279条查询结果,搜索用时 0 毫秒
51.
Xiaomin Zhu Hans Lambers Wanji Guo Dongdong Chen Zhanfeng Liu Ziliang Zhang Huajun Yin 《Global Change Biology》2023,29(16):4605-4619
Ectomycorrhizal (ECM) functional traits related to nutrient acquisition are impacted by nitrogen (N) deposition. However, less is known about whether these nutrient-acquisition traits associated with roots and hyphae differentially respond to increased N deposition in ECM-dominated forests with different initial N status. We conducted a chronic N addition experiment (25 kg N ha−1 year−1) in two ECM-dominated forests with contrasting initial N status, that is, a Pinus armandii forest (with relatively low N availability) and a Picea asperata forest (with relatively high N availability), to assess nutrient-mining and nutrient-foraging strategies associated with roots and hyphae under N addition. We show that nutrient-acquisition strategies of roots and hyphae differently respond to increased N addition. Root nutrient-acquisition strategies showed a consistent response to N addition, regardless of initial forest nutrient status, shifting from organic N mining toward inorganic N foraging. In contrast, the hyphal nutrient-acquisition strategy showed diverse responses to N addition depending on initial forest N status. In the Pinus armandii forest, trees increased belowground carbon (C) allocation to ECM fungi thus enhancing hyphal N-mining capacity under increased N availability. By comparison, in the Picea asperata forest, ECM fungi enhanced both capacities of P foraging and P mining in response to N-induced P limitation. In conclusion, our results demonstrate that ECM fungal hyphae exhibit greater plasticity in nutrient-mining and nutrient-foraging strategies than roots do in response to changes of nutrient status induced by N deposition. This study highlights the importance of ECM associations in tree acclimation and forest function stability under changing environments. 相似文献
52.
Scooter D. Johnson Evan R. Glaser Fritz J. Kub Charles R. Eddy Jr. 《Journal of visualized experiments : JoVE》2015,(99)
Aerosol deposition (AD) is a thick-film deposition process that can produce layers up to several hundred micrometers thick with densities greater than 95% of the bulk. The primary advantage of AD is that the deposition takes place entirely at ambient temperature; thereby enabling film growth in material systems with disparate melting temperatures. This report describes in detail the processing steps for preparing the powder and for performing AD using the custom-built system. Representative characterization results are presented from scanning electron microscopy, profilometry, and ferromagnetic resonance for films grown in this system. As a representative overview of the capabilities of the system, focus is given to a sample produced following the described protocol and system setup. Results indicate that this system can successfully deposit 11 µm thick yttrium iron garnet films that are > 90% of the bulk density during a single 5 min deposition run. A discussion of methods to afford better control of the aerosol and particle selection for improved thickness and roughness variations in the film is provided. 相似文献
53.
Lithium Batteries: Highly Nitridated Graphene–Li2S Cathodes with Stable Modulated Cycles (Adv. Energy Mater. 23/2015) 下载免费PDF全文
54.
亚热带森林生态系统具有巨大的固碳潜力。净初级生产力(NPP)在碳循环过程中具有重要的作用, 受到气候变化、大气成分、森林扰动的强度和频度、林龄等因子的综合影响, 然而目前上述各因子对亚热带森林NPP变化的贡献尚不明确, 需要鉴别森林NPP时空变化的主要驱动因子, 以准确认识亚热带森林生态系统碳循环。该文综合气象数据、年最大叶面积指数(LAI)、参考年NPP (BEPS模型模拟)、林龄、森林类型、土地覆盖、数字高程模型(DEM)、土壤质地、CO2浓度、氮沉降等多源数据, 利用InTEC模型(Integrated Terrestrial Ecosystem Carbon-budget Model)研究亚热带典型地区江西省森林生态系统1901-2010年NPP时空动态变化特征, 通过模拟情景设计, 着重讨论1970-2010年气候变化、林龄、CO2浓度和氮沉降对森林NPP动态变化的影响。研究结果如下: (1) InTEC模型能较好地模拟研究区NPP的时空变化; (2)江西省森林NPP 1901-2010年为(47.7 ± 4.2) Tg C·a-1 (平均值±标准偏差), 其中20世纪70年代、80年代、90年代分别为50.7、48.8、45.4 Tg C·a-1, 2000-2009年平均为55.2 Tg C·a-1; 随着森林干扰后的恢复再生长, 江西省森林NPP显著上升, 2000-2009年NPP增加的森林面积占森林总面积的60%; (3) 1970-2010年, 仅考虑森林干扰因子和仅考虑非干扰因子(气候、氮沉降、CO2浓度)情景下NPP分别为43.1和53.9 Tg C·a-1, 比综合考虑干扰因子和非干扰因子作用下的NPP分别低估7.3 Tg C·a-1 (低估的NPP与综合考虑干扰因子和非干扰因子作用下NPP的比值为14.5%,下同)和高估3.6 Tg C·a-1 (7.1%); 气候因子导致平均NPP减少2.0 Tg C·a-1 (4.7%), 氮沉降导致平均NPP增加4.5 Tg C·a-1 (10.4%), CO2浓度变化及耦合效应(氮沉降+ CO2浓度变化)分别导致平均NPP增加4.4 Tg C·a-1 (10.3%)和9.4 Tg C·a-1 (21.8%)。 相似文献
55.
Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland 总被引:8,自引:0,他引:8
Nykänen Hannu Vasander Harri Huttunen Jari T. Martikainen Pertti J. 《Plant and Soil》2002,242(1):147-155
Methane (CH4) and nitrous oxide (N2O) dynamics were studied in a boreal Sphagnum fuscum pine bog receiving annually (from 1991 to 1996) 30 or 100 kg NH4NO3-N ha–1. The gas emissions were measured during the last three growing seasons of the experiment. Nitrogen treatment did not affect the CH4 fluxes in the microsites where S. fuscum and S. angustifolium dominated. However, addition of 100 kg NH4NO3-N ha–1 yr–1 increased the CH4 emission from those microsites dominated by S. fuscum. This increase was associated with the increase in coverage of cotton grass (Eriophorum vaginatum) induced by the nitrogen treatment. The differences in the CH4 emissions were not related to the CH4 oxidation and production potentials in the peat profiles. The N2O fluxes were negligible from all microsites. Only minor short-term increases occurred after the nitrogen addition. 相似文献
56.
57.
58.
Jianwen Liang Xiaona Li Yang Zhao Lyudmila V. Goncharova Weihan Li Keegan R. Adair Mohammad Norouzi Banis Yongfeng Hu Tsun‐Kong Sham Huan Huang Li Zhang Shangqian Zhao Shigang Lu Ruying Li Xueliang Sun 《Liver Transplantation》2019,9(38)
Li metal is a promising anode material for all‐solid‐state batteries, owing to its high specific capacity and low electrochemical potential. However, direct contact of Li metal with most solid‐state electrolytes induces severe side reactions that can lead to dendrite formation and short circuits. Moreover, Li metal is unstable when exposed to air, leading to stringent processing requirements. Herein, it is reported that the Li3PS4/Li interface in all‐solid‐state batteries can be stabilized by an air‐stable LixSiSy protection layer that is formed in situ on the surface of Li metal through a solution‐based method. Highly stable Li cycling for over 2000 h in symmetrical cells and a lifetime of over 100 cycles can be achieved for an all‐solid‐state LiCoO2/Li3PS4/Li cell. Synchrotron‐based high energy X‐ray photoelectron spectroscopy in‐depth analysis demonstrates the distribution of different components within the protection layer. The in situ formation of an electronically insulating LixSiSy protection layer with highly ionic conductivity provides an effective way to prevent Li dendrite formation in high‐energy all‐solid‐state Li metal batteries. 相似文献
59.
Effects of short-term nitrogen addition on fine root biomass,lifespan and morphology of Castanopsis platyacantha in a subtropical secondary evergreen broad-leaved forest 下载免费PDF全文
《植物生态学报》2017,41(10):1041
Aims Fine roots are the principal parts for plant nutrients acquisition and play an important role in the underground ecosystem. Increased nitrogen (N) deposition has changed the soil environment and thus has a potential influence on fine roots. The purpose of this study is to reveal the effect of N deposition on biomass, lifespan and morphology of fine root.Methods A field N addition experiment was conducted in a secondary broad-leaved forest in subtropical China from May 2013 to September 2015. Three levels of N treatments: CK (no N added), LN (5 g·m-2·a-1), and HN (15 g·m-2·a-1) were applied monthly. Responses of fine root biomass, lifespan, and morphology of Castanopsis platyacantha to N addition were analyzed by using a minirhizotron image system from April 2014 to September 2015. Surface soil sample (0-10 cm) was collected in November 2014 and soil pH value, and concentrations of NH4+-N and NO3--N were measured.Important findings The biomass and average lifespan of the fine roots of C. platyacantha were 128.30 g·m-3 and 113-186 days, respectively, in 0-45 cm soil layer. Nitrogen addition had no significant effect on either fine root biomass or lifespan in 0-45 cm soil layer. However, LN treatment significantly decreased C. platyacantha root superficial area in 0-15 cm soil layer. HN treatment significantly decreased soil pH value. Our study indicated that short-term N addition influences soil inorganic N concentration and thus decreased pH value in surface soil, and thereafter affect fine root morphology. Short-term N addition, however, did not affect the fine root biomass, lifespan and morphology in subsoil. 相似文献
60.
Nitrogen addition reduces soil respiration in a mature tropical forest in southern China 总被引:10,自引:0,他引:10
JIANGMING MO WEI ZHANG WEIXING ZHU† PER GUNDERSEN‡ YUNTING FANG DEJUN LI HUI WANG 《Global Change Biology》2008,14(2):403-412
Response of soil respiration (CO2 emission) to simulated nitrogen (N) deposition in a mature tropical forest in southern China was studied from October 2005 to September 2006. The objective was to test the hypothesis that N addition would reduce soil respiration in N saturated tropical forests. Static chamber and gas chromatography techniques were used to quantify the soil respiration, following four‐levels of N treatments (Control, no N addition; Low‐N, 5 g N m?2 yr?1; Medium‐N, 10 g N m?2 yr?1; and High‐N, 15 g N m?2 yr?1 experimental inputs), which had been applied for 26 months before and continued throughout the respiration measurement period. Results showed that soil respiration exhibited a strong seasonal pattern, with the highest rates found in the warm and wet growing season (April–September) and the lowest rates in the dry dormant season (December–February). Soil respiration rates showed a significant positive exponential relationship with soil temperature, whereas soil moisture only affect soil respiration at dry conditions in the dormant season. Annual accumulative soil respiration was 601±30 g CO2‐C m?2 yr?1 in the Controls. Annual mean soil respiration rate in the Control, Low‐N and Medium‐N treatments (69±3, 72±3 and 63±1 mg CO2‐C m?2 h?1, respectively) did not differ significantly, whereas it was 14% lower in the High‐N treatment (58±3 mg CO2‐C m?2 h?1) compared with the Control treatment, also the temperature sensitivity of respiration, Q10 was reduced from 2.6 in the Control with 2.2 in the High‐N treatment. The decrease in soil respiration occurred in the warm and wet growing season and were correlated with a decrease in soil microbial activities and in fine root biomass in the N‐treated plots. Our results suggest that response of soil respiration to atmospheric N deposition in tropical forests is a decline, but it may vary depending on the rate of N deposition. 相似文献