首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1533篇
  免费   376篇
  国内免费   370篇
  2279篇
  2024年   14篇
  2023年   45篇
  2022年   37篇
  2021年   55篇
  2020年   104篇
  2019年   123篇
  2018年   117篇
  2017年   138篇
  2016年   106篇
  2015年   118篇
  2014年   101篇
  2013年   121篇
  2012年   67篇
  2011年   76篇
  2010年   53篇
  2009年   83篇
  2008年   81篇
  2007年   70篇
  2006年   89篇
  2005年   71篇
  2004年   64篇
  2003年   52篇
  2002年   52篇
  2001年   37篇
  2000年   45篇
  1999年   29篇
  1998年   50篇
  1997年   21篇
  1996年   27篇
  1995年   29篇
  1994年   16篇
  1993年   15篇
  1992年   23篇
  1991年   17篇
  1990年   18篇
  1989年   14篇
  1988年   14篇
  1987年   18篇
  1986年   13篇
  1985年   9篇
  1984年   7篇
  1983年   4篇
  1982年   17篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1958年   3篇
排序方式: 共有2279条查询结果,搜索用时 15 毫秒
11.
Herein, a novel electrospun single‐ion conducting polymer electrolyte (SIPE) composed of nanoscale mixed poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) and lithium poly(4,4′‐diaminodiphenylsulfone, bis(4‐carbonyl benzene sulfonyl)imide) (LiPSI) is reported, which simultaneously overcomes the drawbacks of the polyolefin‐based separator (low porosity and poor electrolyte wettability and thermal dimensional stability) and the LiPF6 salt (poor thermal stability and moisture sensitivity). The electrospun nanofiber membrane (es‐PVPSI) has high porosity and appropriate mechanical strength. The fully aromatic polyamide backbone enables high thermal dimensional stability of es‐PVPSI membrane even at 300 °C, while the high polarity and high porosity ensures fast electrolyte wetting. Impregnation of the membrane with the ethylene carbonate (EC)/dimethyl carbonate (DMC) (v:v = 1:1) solvent mixture yields a SIPE offering wide electrochemical stability, good ionic conductivity, and high lithium‐ion transference number. Based on the above‐mentioned merits, Li/LiFePO4 cells using such a SIPE exhibit excellent rate capacity and outstanding electrochemical stability for 1000 cycles at least, indicating that such an electrolyte can replace the conventional liquid electrolyte–polyolefin combination in lithium ion batteries (LIBs). In addition, the long‐term stripping–plating cycling test coupled with scanning electron microscope (SEM) images of lithium foil clearly confirms that the es‐PVPSI membrane is capable of suppressing lithium dendrite growth, which is fundamental for its use in high‐energy Li metal batteries.  相似文献   
12.
Previous studies have demonstrated changes in plant growth and reproduction in response to nutrient availability, but responses of plant growth and reproduction to multiple levels of nutrient enrichment remain unclear. In this study, a factorial field experiment was performed with manipulation of nitrogen (N) and phosphorus (P) availability to examine seed production of the dominant species, Stipa krylovii, in response to N and P addition in a temperate steppe. There were three levels of N and P addition in this experiment, including no N addition (0 g N m−2 year−1), low N addition (10 g N m−2 year−1), and high N addition (40 g N m−2 year−1) for N addition treatment, and no P addition (0 g P m−2 year−1), low P addition (5 g P m−2 year−1), and high P addition (10 g P m−2 year−1) for P addition treatment. Low N addition enhanced seed production by 814%, 1371%, and 1321% under ambient, low, and high P addition levels, respectively. High N addition increased seed production by 2136%, 3560%, and 3550% under ambient, low, and high P addition levels, respectively. However, P addition did not affect seed production in the absence of N addition, but enhanced it under N addition. N addition enhanced seed production mainly by increasing the tiller number and inflorescence abundance per plant, whereas P addition stimulated it by decreasing the plant density yet stimulating height of plants and their seed number per inflorescence. Our results indicate seed production is not limited by P availability but rather by N availability in the temperate steppe, whereas seed production will be increased by P addition when N availability is improved. These findings enable a better understanding of plant reproduction dynamics in the temperate steppe under intensified nutrient enrichment and can inform their improved management in the future.  相似文献   
13.
Northern forest ecosystems are exposed to a range of anthropogenic processes including global warming, atmospheric deposition, and changing land‐use. The vegetation of northern forests is composed of species with several functional traits related to these processes, whose effects may be difficult to disentangle. Here, we combined analyses of spatio‐temporal dynamics and functional traits of ground flora species, including morphological characteristics, responses to macro‐ and microclimate, soil conditions, and disturbance. Based on data from the Swedish National Forest Inventory, we compared changes in occurrence of a large number of ground flora species during a 20‐year period (1994–2013) in boreal and temperate Sweden respectively. Our results show that a majority of the common ground flora species have changed their overall frequency. Comparisons of functional traits between increasing and declining species, and of trends in mean trait values of sample plots, indicate that current floristic changes are caused by combined effects of climate warming, nitrogen deposition and changing land‐use. Changes and their relations with plant traits were generally larger in temperate southern Sweden. Nutrient‐demanding species with mesotrophic morphology were favored by ongoing eutrophication due to nitrogen deposition in the temperate zone, while dwarf shrubs with low demands on nitrogen decreased in frequency. An increase of species with less northern and less eastern distribution limits was also restricted to temperate Sweden, and indicates effects of a moister and milder macroclimate. A trend toward dense plantation forests is mirrored by a decrease of light‐demanding species in both vegetation zones, and a decrease of grassland species in the temperate zone. Although denser tree canopies may buffer effects of a warmer climate and of nitrogen deposition to some extent, traits related to these processes were weakly correlated in the group of species with changing frequency. Hence, our results indicate specific effects of these often confounded anthropogenic processes.  相似文献   
14.
The application of lithium (Li) metal anodes in rechargeable batteries is primarily restricted by Li dendrite growth on the metal's surface, which leads to shortened cycle life and safety concerns. Herein, well‐spaced nanotubes with ultrauniform surface curvature are introduced as a Li metal anode structure. The ultrauniform nanotubular surface generates uniform local electric fields that evenly attract Li‐ions to the surface, thereby inducing even current density distribution. Moreover, the well‐defined nanotube spacing offers Li diffusion pathways to the electroactive areas as well as the confined spaces to host deposited Li. These structural attributes create a unique electrodeposition manner; i.e., Li metal homogenously deposits on the nanotubular wall, causing each Li nanotube to grow in circumference without obvious sign of dendritic formation. Thus, the full‐cell battery with the spaced Li nanotubes exhibits a high specific capacity of 132 mA h g?1 at 1 C and an excellent coulombic efficiency of ≈99.85% over 400 cycles.  相似文献   
15.
大蒜芥属一新变种   总被引:1,自引:1,他引:1  
发表了大蒜芥属一新变种,无毛全叶大蒜芥(Sisymbrium luteum (Maxim.)O. E. Schulz var. glabrum F. Z. Li et Z. Y. Sun.)。  相似文献   
16.
17.
Decomposition of plant material is a complex process that requiresinteraction among a diversity of microorganisms whose presence and activity issubject to regulation by a wide range of environmental factors. Analysis ofextracellular enzyme activity (EEA) provides a way to relate the functionalorganization of microdecomposer communities to environmental variables. In thisstudy, we examined EEA in relation to litter composition and nitrogendeposition. Mesh bags containing senescent leaves of Quercusborealis (red oak), Acer rubrum (red maple) andCornus florida (flowering dogwood) were placed on forestfloor plots in southeastern New York. One-third of the plots were sprayedmonthly with distilled water. The other plots were sprayed monthly withNH4NO3 solution at dose rates equivalent to 2 or 8 g N m–2 y–1. Mass loss, litter composition, fungal mass, and the activities ofeight enzymes were measured on 13 dates for each litter type. Dogwood wasfollowed for one year, maple for two, oak for three. For each litter type andtreatment, enzymatic turnover activities were calculated from regressions of LN(%mass remaining) vs. cumulative activity. The decomposition of dogwood litterwas more efficient than that of maple and oak. Maple litter had the lowestfungal mass and required the most enzymatic work to decompose, even though itsmass loss rate was twice that of oak. Across litter types, N amendment reducedapparent enzymatic efficiencies and shifted EEA away from N acquisition andtoward P acquisition, and away from polyphenol oxidation and towardpolysaccharide hydrolysis. The effect of these shifts on decomposition ratevaried with litter composition: dogwood was stimulated, oak was inhibited andmaple showed mixed effects. The results show that relatively small shifts intheactivity of one or two critical enzymes can significantly alter decompositionrates.  相似文献   
18.
Morphological characteristics of two Pedomicrobium-like budding bacteria are described. A structured surface layer was regularly observed on strain 868. Ruthenium red- and Alcian blue-staining polymers were found on both strains.When either strain was grown in the presence of iron or manganese, the corresponding oxides accumulated on their surfaces. In thin sections iron oxides appeared as fine threads, arrays of particles or dense coatings, depending on the source of iron. Manganese oxides appeared as branching filaments or convoluted ribbons. Both metal oxides stained with ruthenium red. Extraction of the oxides followed by ruthenium red staining revealed that polyanionic polymers previously deposited on the cells were associated with the metals.Treatment of cultures with glutaraldehyde, HgCl2, or heat, inhibited manganese but not iron deposition, suggesting that iron oxides accumulated by passive, non-biological processes. Manganese oxides apparently accumulated under control of a biological manganese-oxidizing factor. Incomplete inhibition of manganese deposition observed in cell suspensions suggested that, if the oxidizing factor was an enzyme, it was unusually stable.Based on these results, possible mechanisms of iron and manganese deposition in association with extracellular polymers are suggested.  相似文献   
19.
The performance of perovskite solar cells (PSCs) relies on the synthesis method and chemical composition of the perovskite materials. So far, PSCs that have adopted two‐step sequential deposited perovskite with the state‐of‐art composition (FAPbI3)1?x(MAPbBr3)x (x < 0.05) have achieved record power conversion efficiency (PCE), while their one‐step antisolvent dripping counterparts with typical composition Cs0.05FA0.81MA0.14Pb(I0.85Br0.15)3 with more bromine have exhibited much better long‐term operational stability. Thus, halogen engineering that aims to elevate bromine content in sequential deposited perovskite film would push operational stability of PSCs toward that of antisolvent dripping deposited perovskite materials. Here, a Br‐rich seeding growth method is devised and perovskite seed solution with high bromine content is introduced into a PbI2 precursor, leading to bromine incorporation in the resulting perovskite film. Photovoltaic devices fabricated by Br‐rich seeding growth method exhibit a PCE of 21.5%, similar to 21.6% for PSCs having lower bromine content. Whereas, the operational stability of PSCs with higher bromine content is significantly enhanced, with over 80% of initial PCE retained after 500 h tracking at maximum power point under 1‐sun illumination. This work highlights the vital importance of halogen composition for the operational stability of PSCs, and introduces an effective way to incorporate bromine into mixed‐cation‐halide perovskite film via sequential deposition method.  相似文献   
20.
Human activities have greatly altered the nitrogen (N) cycle, accelerating the rate of N fixation in landscapes and delivery of N to water bodies. To examine relationships between anthropogenic N inputs and riverine N export, we constructed budgets describing N inputs and losses for 16 catchments, which encompass a range of climatic variability and are major drainages to the coast of the North Atlantic Ocean along a latitudinal profile from Maine to Virginia. Using data from the early 1990's, we quantified inputs of N to each catchment from atmospheric deposition, application of nitrogenous fertilizers, biological nitrogen fixation, and import of N in agricultural products (food and feed). We compared these inputs with N losses from the system in riverine export.The importance of the relative sources varies widely by catchment and is related to land use. Net atmospheric deposition was the largest N source (>60%) to the forested basins of northern New England (e.g. Penobscot and Kennebec); net import of N in food was the largest source of N to the more populated regions of southern New England (e.g. Charles & Blackstone); and agricultural inputs were the dominant N sources in the Mid-Atlantic region (e.g. Schuylkill & Potomac). Over the combined area of the catchments, net atmospheric deposition was the largest single source input (31%), followed by net imports of N in food and feed (25%), fixation in agricultural lands (24%), fertilizer use (15%), and fixation in forests (5%). The combined effect of fertilizer use, fixation in crop lands, and animal feed imports makes agriculture the largest overall source of N. Riverine export of N is well correlated with N inputs, but it accounts for only a fraction (25%) of the total N inputs. This work provides an understanding of the sources of N in landscapes, and highlights how human activities impact N cycling in the northeast region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号