首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1132篇
  免费   37篇
  国内免费   51篇
  1220篇
  2023年   10篇
  2022年   23篇
  2021年   18篇
  2020年   18篇
  2019年   27篇
  2018年   23篇
  2017年   20篇
  2016年   25篇
  2015年   16篇
  2014年   37篇
  2013年   83篇
  2012年   31篇
  2011年   48篇
  2010年   45篇
  2009年   61篇
  2008年   57篇
  2007年   56篇
  2006年   42篇
  2005年   65篇
  2004年   52篇
  2003年   39篇
  2002年   49篇
  2001年   27篇
  2000年   32篇
  1999年   23篇
  1998年   21篇
  1997年   26篇
  1996年   17篇
  1995年   26篇
  1994年   21篇
  1993年   15篇
  1992年   20篇
  1991年   8篇
  1990年   12篇
  1989年   5篇
  1988年   7篇
  1987年   11篇
  1986年   12篇
  1985年   10篇
  1984年   13篇
  1983年   12篇
  1982年   13篇
  1981年   9篇
  1980年   10篇
  1979年   13篇
  1978年   8篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1220条查询结果,搜索用时 0 毫秒
21.
22.
A series of substrate analogue inhibitors of the serine protease HAT, containing a 4-amidinobenzylamide moiety as the P1 residue, was prepared. The most potent compounds possess a basic amino acid in the d-configuration as P3 residue. Whereas inhibitor 4 (Ki 13 nM) containing proline as the P2 residue completely lacks selectivity, incorporation of norvaline leads to a potent inhibitor (15, Ki 15 nM) with improved selectivity for HAT in comparison to the coagulation proteases thrombin and factor Xa or the fibrinolytic plasmin. Selected inhibitors were able to suppress influenza virus replication in a HAT-expressing MDCK cell model.  相似文献   
23.
内含肽介导的蛋白质断裂被广泛地应用于蛋白质纯化、连接和环化. 但目前的方法都是用传统的连续的内含肽来介导蛋白质断裂反应,因而往往存在自发性断裂、产率低等问题. 本实验选择3个S1型新型断裂内含肽Ter ThyX、Ssp GryB和Rma DnaB来实现蛋白质断裂反应的可控性. 在可控性C端断裂反应中,S1型断裂内含肽的C端片段(IC )与硫氧还蛋白(T)融合作为前体蛋白,加入化学合成的Ssp DnaB S1型断裂内含肽 的N端小肽与二硫苏糖醇(DTT)共同诱导C端断裂反应.结果表明,该小肽可以诱导这 3个不同的S1型断裂内含肽的前体蛋白发生C端断裂反应. 该方法为利用内含肽C端断 裂介导的蛋白质纯化提供了更多的选择,并为内含肽的结构与功能的关系研究提供-有用的线索.  相似文献   
24.
Biochemical studies on anaerobic phenylme-thylether cleavage by homoacetogenic bacteria have been hampered so far by the complexity of the reaction chain involving methyl transfer to acetyl-CoA synthase and subsequent methyl group carbonylation to acetyl-CoA. Strain TMBS 4 differs from other demethylating homoacetogenic bacteria in using sulfide as a methyl acceptor, thereby forming methanethiol and dimethylsulfide. Growing and resting cells of strain TMBS 4 used alternatitively CO2 as a precursor of the methyl acceptor CO for homoacetogenic acetate formation. Demethylation was inhibited by propyl iodide and reactivated by light, indicating involvement of a corrinoid-dependent methyltransferase. Strain TMBS 4 contained ca. 750 nmol g dry mass-1 of a corrinoid tentatively identified as 5-hydroxybenzimidazolyl cobamide. A photometric assay for measuring the demethylation activity in cell extracts was developed based on the formation of a yellow complex of Ti3+ with 5-hydroxyvanillate produced from syringate by demethylation. In cell extracts, the methyltransfer reaction from methoxylated aromatic compounds to sulfide or methanethiol depended on reductive activation by Ti3+. ATP and Mg2+ together greatly stimulated this reductive activation without being necessary for the demethylation reaction itself. The specific activity of the transmethylating enzyme system increased proportionally with protein concentration up to 3 mg ml-1 reaching a constant level of 20 nmol min-1 mg-1 at protein concentrations 10 mg ml-1. The specific rate of activation increased in a non-linear manner with protein concentration. Strain TMBS 4 degraded gallate, the product of sequential demethylations, to 3 acetate through the phloroglucinol pathway as found earlier with Pelobacter acidigallici.Abbreviations BV benzyl viologen - CTAB cetyltrimethylammonium bromide - H4folate tetrahydrofolate - MOPS 3-[N-morpholino]propanesulfonic acid - MV methyl viologen - NTA nitrilotriacetate - td doubling time - TMB 3,4,5-trimethoxybenzoate  相似文献   
25.
26.
1-Aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) is the principal enzyme in phytohormone ethylene biosynthesis. Previous studies have shown that the hypervariable C-terminus of ACS is proteolytically processed in vivo. However, the protease responsible for this has not yet been identified. In the present study, we investigated the processing of the 55-kDa full-length tomato ACS (LeACS2) into 52-, 50- and 49-kDa truncated isoforms in ripening tomato (Lycopersicon esculentum Mill. cv. Cooperation 903) fruit using the sodium dodecyl sulfate-boiling method. Meanwhile, an LeACS2-processing protease was purified via multi-step column chromatography from tomato fruit. Subsequent biochemical analysis of the 64-kDa purified protease revealed that it is a metalloprotease active at multiple cleavage sites within the hypervariable C-terminus of LeACS2. N-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight analysis indicated that the LeACS2-processing metalloprotease cleaves at the C-terminal sites Lys^438, Glu^447, Lys^448, Asn^456, Ser^460, Ser^462, Lys^463, and Leu^474, but does not cleave the N- terminus of LeACS2. Four C-terminus-deleted (26-50 amino acids) LeACS2 fusion proteins were overproduced and subjected to proteolysis by this metalloprotease to identify the multiple cleavage sites located on the N-terminal side of the phosphorylation site Ser^460. The results indisputably confirmed the presence of cleavage sites within the region between the α-helix domain (H14) and Ser^460 for this metalloprotease. Furthermore, the resulting C-terminally truncated LeACS2 isoforms were active enzymatically. Because this protease could produce LeACS2 isoforms in vitro similar to those detected in vivo, it is proposed that this metalloprotease may be involved in the proteolysis of LeACS2 in vivo.  相似文献   
27.
Previous studies on copper(II) complexes with oxindole-Schiff base ligands have shown their potential antitumor activity towards different cells, inducing apoptosis through a preferential attack to DNA and/or mitochondria. Herein, we better characterize the interactions between some of these copper(II) complexes and DNA. Investigations on its binding ability to DNA were carried out by fluorescence measurements in competitive experiments with ethidium bromide, using plasmidial or calf-thymus DNA. These results indicated an efficient binding process similar to that observed with copper(II)-phenanthroline species, [Cu(o-phen)2]2+, with binding constants in the range 3 to 9 × 102 M− 1. DNA cleavage experiments in the presence and absence of distamycin, a recognized binder of DNA, indicated that this binding probably occurs at major or minor groove, leading to double-strand DNA cleavage, and being modulated by the imine ligand. Corroborating these data, discrete changes in EPR spectra of the studied complexes were observed in the presence of DNA, while more remarkable changes were observed in the presence of nucleotides (AMP, GMP, CMP or UMP). Additional evidence for preferential coordination of the copper centers to the bases guanine or cytosine was obtained from titrations of these complexes with each nucleotide, monitored by absorption spectral changes. Therefore, the obtained data point out to their action as groove binders to DNA bases, rather than as intercalators or covalent cross-linkers. Further investigations by SDS PAGE using 32P-ATP or 32P-oligonucleotides attested that no hydrolysis of phosphate linkage in DNA or RNA occurs, in the presence of such complexes, confirming their main oxidative mechanism of action.  相似文献   
28.
TILLING: practical single-nucleotide mutation discovery   总被引:20,自引:0,他引:20  
In the post-genomic sequencing era, an expanding portfolio of genomic technologies has been applied to the study of gene function. Reverse genetics approaches that provide targeted inactivation of genes identified by sequence analysis include TILLING (for Targeting Local Lesions IN Genomes). TILLING searches the genomes of mutagenized organisms for mutations in a chosen gene, typically single base-pair substitutions. This review covers practical aspects of the technology, ranging from building the mutagenized population to mutation discovery, and discusses possible improvements to current protocols and the impact of new genomic methods for mutation discovery in relation to the future of the TILLING approach.  相似文献   
29.
30.
The relationship between NADPH-dependent lipid peroxidation and the degradation of cytochrome P-450 has been studied in bovine adrenal cortex mitochondria. Malondialdehyde formation is accompanied by a corresponding decrease in total cytochrome P-450 content. Inhibitors of lipid peroxidation also prevent the loss of cytochrome P-450, further demonstrating a direct relationship between NADPH-dependent lipid peroxidation and degradation of P-450. To differentiate between cytochrome P-450(11)beta and P-450scc, steroid-induced difference spectra were used to evaluate P-450 degradation. These measurements provide the first evidence that both P-450's are degraded during NADPH-dependent lipid peroxidation with P-450(11)beta being much more susceptible to this process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号