首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   26篇
  国内免费   3篇
  217篇
  2024年   1篇
  2023年   2篇
  2021年   4篇
  2020年   7篇
  2019年   6篇
  2018年   10篇
  2017年   10篇
  2016年   13篇
  2015年   8篇
  2014年   8篇
  2013年   10篇
  2012年   8篇
  2011年   10篇
  2010年   12篇
  2009年   7篇
  2008年   6篇
  2007年   12篇
  2006年   11篇
  2005年   8篇
  2004年   6篇
  2003年   7篇
  2002年   11篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
21.
Transverse sections of the skin in the dorsal fin of the white shark, Carcharodon carcharias, tiger shark, Galeocerdo cuvier, and spotted raggedtooth shark, Carcharias taurus, show large numbers of dermal fiber bundles, which extend from the body into the fin. The bundles are tightly grouped together in staggered formation (not arranged in a straight line or in rows). This arrangement of dermal fibers gives tensile strength without impeding fiber movement. Tangential sections indicate that the fibers in all three species are strained and lie at angles in excess of 60 degrees . Of the three species investigated the dermal fibers in C. carcharias are the most densely concentrated and extend furthest distally along the dorsal fin. The overall results indicate that the dorsal fin of C. carcharias functions as a dynamic stabilizer and that the dermal fibers are crucial to this role. The fibers work like riggings that stabilize a ship's mast. During fast swimming, when the problems of yaw and roll are greatest, hydrostatic pressure within the shark increases and the fibers around the body, including in the dorsal fin, become taut, thereby stiffening the fin. During slow swimming and feeding the hydrostatic pressure is reduced, the fibers are slackened, and the muscles are able to exert greater bending forces on the fin via the radials and ceratotrichia. In C. carcharias there is a trade-off for greater stiffness of the dorsal fin against flexibility.  相似文献   
22.
The future status of sharks is an issue of widespread conservation concern due to declines in many species in the face of high levels of exploitation to satisfy market demands for products, especially fins. Substantial declines in the large-bodied hammerhead sharks, Sphyrna lewini, S. mokarran and S. zygaena, even in regions where some management occurs, indicate that informed conservation measures are warranted for these circumglobally distributed species. Despite the importance of assessing shark catch and trade on a species-specific basis to detect potential overexploitation of individual species, achieving this goal for hammerheads has proven elusive due to difficulties in identification of their products. Here, we present the development and application of a diagnostic, streamlined, five-primer multiplex polymerase chain reaction assay utilizing species-specific primers based on nuclear ribosomal ITS2 for the three hammerhead species throughout their global distribution. Application of this assay to investigations of the fin market confirmed the presence of hammerhead fins in the international trade. A study of the world’s largest fin market in Hong Kong revealed a high concordance between specific Chinese-name trade categories and fins from these three species (“Bai Chun” with S. lewini, “Gui Chun” with S. zygaena and “Gu Pian” with S.␣mokarran), and clear species preferences. This concordance information allows the use of market records for monitoring species-specific trends in trade and exploitation rates. The assay is also proving useful for identification of shark body parts in U.S. fisheries law-enforcement activities. Screening of morphologically identified “ S. lewini” from globally distributed areas using this assay with subsequent whole ITS2 sequencing suggests a cryptic species closely related to S. lewini occurs off the SE USA coast.  相似文献   
23.
Great white sharks are protected by national legislation in several countries, making this species the most widely protected elasmobranch in the world. Although the market demand for shark fins in general has continued to grow, the value and extent of utilization of white shark fins in trade has been controversial. We combine law enforcement with genetic profiling to demonstrate that illegal trade in fins of this species is occurring in the contemporary international market. Furthermore, we document the presence of fins from very young white sharks in the trade, suggesting a multiple-use market (food to trophies) exists for fins of this species. The presence of small fins in the trade contradicts the view that white shark fins have market value only as large display trophies, and not as food. Our findings indicate that effective conservation of protected shark species will require international management regimes that include monitoring of the shark fishery and trade on a species-specific basis.  相似文献   
24.
The objective of this study was to test if morphological differences in pumpkinseed Lepomis gibbosus found in their native range (eastern North America) that are linked to feeding regime, competition with other species, hydrodynamic forces and habitat were also found among stream‐ and lake‐ or reservoir‐dwelling fish in Iberian systems. The species has been introduced into these systems, expanding its range, and is presumably well adapted to freshwater Iberian Peninsula ecosystems. The results show a consistent pattern for size of lateral fins, with L. gibbosus that inhabit streams in the Iberian Peninsula having longer lateral fins than those inhabiting reservoirs or lakes. Differences in fin placement, body depth and caudal peduncle dimensions do not differentiate populations of L. gibbosus from lentic and lotic water bodies and, therefore, are not consistent with functional expectations. Lepomis gibbosus from lotic and lentic habitats also do not show a consistent pattern of internal morphological differentiation, probably due to the lack of lotic–lentic differences in prey type. Overall, the univariate and multivariate analyses show that most of the external and internal morphological characters that vary among populations do not differentiate lotic from lentic Iberian populations. The lack of expected differences may be a consequence of the high seasonal flow variation in Mediterranean streams, and the resultant low‐ or no‐flow conditions during periods of summer drought.  相似文献   
25.
The main factors that affect early survival, physical damage and stress reactions of sardine Sardina pilchardus after live capture and introduction to captivity were examined. A total of 2800 sardines were captured alive from commercial purse seiners in five trials off southern Portugal and monitored for 4 weeks in aquaculture tanks. Survival rates varied considerably between trials (from <20 to >80% after a month), with most deaths occurring in the first 5 days. Sardine early survival was affected by factors related to conditions at sea (catch composition, sea temperature and transportation density), during introduction to captivity (magnitude of thermal shock, land transportation duration and use of antibacterial treatment) and, possibly, their interaction. Physical damage was related to the probability of dying, with fish that died during the first week showing significantly higher scale loss and larger caudal fin erosion that those that were alive in the same period. For all stress variables measured (blood haematocrit, cortisol, glucose and ions in the plasma), the most extreme values were attained during introduction to captivity or in the first hours after. After 2 weeks in captivity, most variables had returned to levels close to those observed at the onset of purse-seine fishing, suggesting that maintenance conditions were adequate to permit a rapid recovery from fishing and transport stress.  相似文献   
26.
We studied the startle response of the African butterfly fish, Pantodon buchholzi (Osteoglossomorpha, Osteoglossoidea). It is an upward movement, mediated by abduction of the pectoral fins, and is elicited by mechanical and visual stimuli. Because this fish inhabits the first few centimeters beneath the water surface, its startle response results in an aerial excursion that may be described as ballistic-like, following a motion as defined by linear acceleration. We show that the aerial excursion is well-modeled by a parabola. On average, a fish jumps no more than twice its height and travels horizontally about five times its standard length. The fish may exhibit variable in-flight trunk and fin movements, but neither increases the travel distance in air following the initial in-water propulsive event. Similar vertical jumps also occur entirely within the water column suggesting that this motor behavior of Pantodon is a general escape behavior analogous to a Mauthner neuron-induced escape response. The variability in its posture in air and its direction of motion after reentering the water enhances this act of vertical flight as a step in this fish's escape behavior. The aerial aspect of its escape behavior is only a consequence of its position in the water column.  相似文献   
27.
Two reproductive types of kokanee are found in Okanagan Lake, British Columbia: one form that spawns in streams, and another that spawns approximately 2–4 weeks later along beaches of the lake. We examined the levels and patterns of genetic and morphometric variation among three populations (1 beach and 2 stream populations) to better understand life history differentiation. We assayed allozyme variation at 74 loci and identified 15 P0.095 loci. Average FST was 0.041 among the three samples; the two stream-spawning populations grouped together in genetic distance analyses. We examined multivariate morphometric variation and fin size/shape variation using 35 truss characters. Populations did not sort morphologically by spawning type in principal component and relative warp analyses. Instead both analyses indicated that one stream-spawning population (Peachland Creek) was significantly more robust and had shallower caudal fins in comparison to the other samples. Second, clear multivariate shape differences between males and females were identified involving jaw size, mid-body dimensions, and caudal fin shape. A simple bivariate plot of tail `forkness' against fork length demonstrated that males had more forked tails and females had flattened tails. Level of differentiation of secondary sexual characteristics did not vary between the spawning types, although the beach-spawning population and one stream-spawning population did not show the strong, gender-discriminating variability in tail forkness. Although these two reproductive life history types of kokanee form discrete genetic groups, environmental differences are apparently insufficient to effect consistent differences in body shape, or fin size and shape between stream and beach-spawning morphs.  相似文献   
28.
There is increasing public, governmental and commercial interest in the welfare of intensively farmed fish and stocking density has been highlighted as an area of particular concern. Here we draw scientific attention and debate to this emerging research field by reviewing the evidence for effects of density on rainbow trout. Although no explicit reference to ‘welfare’ has been made, there are 43 studies which have examined the effects of density on production and physiological parameters of rainbow trout. Increasing stocking density does not appear to cause prolonged crowding stress in rainbow trout. However, commonly reported effects of increasing density are reductions in food conversion efficiency, nutritional condition and growth, and an increase in fin erosion. Such changes are indicative of a reduced welfare status—although the magnitude of the effects has tended to be dependent upon study‐specific conditions. Systematic observations on large scale commercial farms are therefore required, rather than extrapolation of these mainly small‐scale experimental findings. There is dispute as to the cause of the observed effects of increasing density, with water quality deterioration and/or an increase in aggressive behaviour being variously proposed. Both causes can theoretically generate the observed effects of increasing density, and the relative contribution of the two causes may depend upon the specific conditions. However, documentation of the relationship between density and the effects of aggressive behaviour at relevant commercial densities is lacking. Consequently only inferential evidence exists that aggressive behaviour generates the observed effects of increasing density, whereas there is direct experimental evidence that water quality degradation is responsible. Nevertheless, there are contradictory recommendations in the literature for key water quality parameters to ensure adequate welfare status. The potential for welfare to be detrimentally affected by non‐aggressive behavioural interactions (abrasion, collision, obstruction) and low densities (due to excessive aggressive behaviour and a poor feeding response) have been largely overlooked. Legislation directly limiting stocking density is likely to be unworkable, and a more practical option might be to prescribe acceptable levels of water quality, health, nutritional condition and behavioural indicators.  相似文献   
29.
Archival bottom‐mounted audio recorders were deployed in nine different areas of the western Mediterranean Sea, Strait of Gibraltar, and adjacent North Atlantic waters during 2006–2009 to study fin whale (Balaenoptera physalus) seasonal presence and population structure. Analysis of 29,822 recording hours revealed typical long, patterned sequences of 20 Hz notes (here called “song”), back‐beats, 135–140 Hz notes, and downsweeps. Acoustic parameters (internote interval, note duration, frequency range, center and peak frequencies) were statistically compared among songs and song notes recorded in all areas. Fin whale singers producing songs attributable to the northeastern North Atlantic subpopulation were detected crossing the Strait of Gibraltar and wintering in the southwestern Mediterranean Sea (Alboran basin), while songs attributed to the Mediterranean were detected in the northwest Mediterranean basin. These results suggest that the northeastern North Atlantic fin whale distribution extends into the southwest Mediterranean basin, and spatial and temporal overlap may exist between this subpopulation and the Mediterranean subpopulation. This new interpretation of the fin whale population structure in the western Mediterranean Sea has important ecological and conservation implications. The conventionally accepted distribution ranges of northeastern North Atlantic and Mediterranean fin whale subpopulations should be reconsidered in light of the results from this study.  相似文献   
30.
Certain species of urodeles and teleost fish can regenerate their tissues. Zebrafish have become a widely used model to study the spontaneous regeneration of adult tissues, such as the heart1, retina2, spinal cord3, optic nerve4, sensory hair cells5, and fins6.The zebrafish fin is a relatively simple appendage that is easily manipulated to study multiple stages in epimorphic regeneration. Classically, fin regeneration was characterized by three distinct stages: wound healing, blastema formation, and fin outgrowth. After amputating part of the fin, the surrounding epithelium proliferates and migrates over the wound. At 33 °C, this process occurs within six hours post-amputation (hpa, Figure 1B)6,7. Next, underlying cells from different lineages (ex. bone, blood, glia, fibroblast) re-enter the cell cycle to form a proliferative blastema, while the overlying epidermis continues to proliferate (Figure 1D)8. Outgrowth occurs as cells proximal to the blastema re-differentiate into their respective lineages to form new tissue (Figure 1E)8. Depending on the level of the amputation, full regeneration is completed in a week to a month.The expression of a large number of gene families, including wnt, hox, fgf, msx, retinoic acid, shh, notch, bmp, and activin-betaA genes, is up-regulated during specific stages of fin regeneration9-16. However, the roles of these genes and their encoded proteins during regeneration have been difficult to assess, unless a specific inhibitor for the protein exists13, a temperature-sensitive mutant exists or a transgenic animal (either overexpressing the wild-type protein or a dominant-negative protein) was generated7,12. We developed a reverse genetic technique to quickly and easily test the function of any gene during fin regeneration.Morpholino oligonucleotides are widely used to study loss of specific proteins during zebrafish, Xenopus, chick, and mouse development17-19. Morpholinos basepair with a complementary RNA sequence to either block pre-mRNA splicing or mRNA translation. We describe a method to efficiently introduce fluorescein-tagged antisense morpholinos into regenerating zebrafish fins to knockdown expression of the target protein. The morpholino is micro-injected into each blastema of the regenerating zebrafish tail fin and electroporated into the surrounding cells. Fluorescein provides the charge to electroporate the morpholino and to visualize the morpholino in the fin tissue.This protocol permits conditional protein knockdown to examine the role of specific proteins during regenerative fin outgrowth. In the Discussion, we describe how this approach can be adapted to study the role of specific proteins during wound healing or blastema formation, as well as a potential marker of cell migration during blastema formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号