首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1192篇
  免费   134篇
  国内免费   75篇
  2024年   4篇
  2023年   29篇
  2022年   15篇
  2021年   35篇
  2020年   37篇
  2019年   54篇
  2018年   46篇
  2017年   56篇
  2016年   58篇
  2015年   49篇
  2014年   48篇
  2013年   78篇
  2012年   41篇
  2011年   62篇
  2010年   53篇
  2009年   55篇
  2008年   57篇
  2007年   42篇
  2006年   71篇
  2005年   51篇
  2004年   48篇
  2003年   37篇
  2002年   51篇
  2001年   39篇
  2000年   30篇
  1999年   33篇
  1998年   40篇
  1997年   12篇
  1996年   19篇
  1995年   23篇
  1994年   8篇
  1993年   17篇
  1992年   4篇
  1991年   10篇
  1990年   5篇
  1989年   9篇
  1988年   5篇
  1987年   4篇
  1986年   7篇
  1985年   6篇
  1984年   11篇
  1983年   7篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   7篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1973年   1篇
排序方式: 共有1401条查询结果,搜索用时 281 毫秒
991.
Studies of the extraction of non-timber forest products have shown that the standing rainforest may be more valuable than alternatives involving deforestation

Although this article is about placing a value on rainforest, it begins by stressing the importance and value of rainforest for its environmental function, particularly for the control of world climate patterns. It is then shown how rainforest peoples depend on the plants around them and in some study areas were found to have a use for every tree on the one-hectare plots. It is therefore not surprising that the rainforest can contain many non-timber forest products (NTFPs) of commercial potential, some of which such as rubber latex and Brazil nuts have been in the market economy for many years. A summary is given of various attempts to place a value on rainforest for its NTFPs. Each of the three studies showed that the extraction of these products could be more valuable than alternative land uses involving deforestation. Various rainforest countries such as Brazil, Guatemala, and Indonesia have set up extractive reserves where local people are allowed to extract NTFPs but not to clear cut the forest. Extractive reserves have slowed down deforestation in some areas, but only provide a meagre subsistence existence for their inhabitants, so while they are useful, they are not a panacea that will solve all the conservation problems of tropical rainforest.  相似文献   
992.
993.
There is an abundant literature on the challenge of integrating uncertainties in experts’ risk assessments, but the evidence on the way they are understood by the public is scarce and mixed. This study aims to better understand the effect of communicating different sources of uncertainty in risk communication. A causal design was employed to test the effect of communicating risk messages varying in type of advisory warning (no risk and suggests no protective measure, or risk and recommends a protective measure) and sources of uncertainty (no uncertainty, divergence between experts, contradictory data, or lack of data) on public reactions. Participants from the general public (N = 434) were randomly assigned to read and react to variants of a fictitious government message discussing the presence of a new micro-organism found in tap water. Multiple analysis of variance showed that to report uncertainty from divergence between experts or from contradictory data reduced the adherence to the message, but not to mention the lack of data. Moreover, the communication of diverse sources of uncertainty did not affect trust in the government when the advisory warning stated there was a risk and recommended a protective measure. These findings have important implications for risk communication.  相似文献   
994.
995.
This study considers how students change their coherent conceptual understanding of natural selection through a hands-on simulation. The results show that most students change their understanding. In addition, some students also underwent a transformative experience and used their new knowledge in a leisure time activity. These transformative experiences appear in different categories where students find value both towards biological content, societal value and individual identity. Finally there is a discussion on how to transfer characteristics from the setting of this study to other educational settings in biology and science in general.  相似文献   
996.
Environmental risk analysts need to draw from a clear typology of uncertainties when qualifying risk estimates and/or significance statements about risk. However, categorizations of uncertainty within existing typologies are largely overlapping, contradictory, and subjective, and many typologies are not designed with environmental risk assessments (ERAs) in mind. In an attempt to rectify these issues, this research provides a new categorization of uncertainties based, for the first time, on the appraisal of a large subset of ERAs, namely 171 peer-reviewed environmental weight-of-evidence assessments. Using this dataset, a defensible typology consisting of seven types of uncertainty (data, language, system, extrapolation, variability, model, and decision) and 20 related sub-types is developed. Relationships between uncertainties and the techniques used to manage them are also identified and statistically evaluated. A highly preferred uncertainty management option is to take no action when faced with uncertainty, although where techniques are applied they are commensurate with the uncertainty in question. Key observations are applied in the form of guidance for dealing with uncertainty, demonstrated through ERAs of genetically modified higher plants in the European Union. The presented typology and accompanying guidance will have positive implications for the identification, prioritization, and management of uncertainty during risk characterization.  相似文献   
997.
Ecologically meaningful predictors are often neglected in plant distribution studies, resulting in incomplete niche quantification and low predictive power of species distribution models (SDMs). Because environmental data are rare and expensive to collect, and because their relationship with local climatic and topographic conditions are complex, mapping them over large geographic extents and at high spatial resolution remains a major challenge. Here, we propose to derive environmental data layers by mapping ecological indicator values in space. We combined ~6 million plant occurrences with expert-based plant ecological indicator values (EIVs) of 3600 species in Switzerland. EIVs representing local soil properties (pH, moisture, moisture variability, aeration, humus and nutrients) and climatic conditions (continentality, light) were modelled at 93 m spatial resolution with the Random Forest algorithm and 16 predictors representing meso-climate, land use, topography and geology. Models were evaluated and predictions of EIVs were compared with soil inventory data. We mapped each EIV separately and evaluated EIV importance in explaining the distribution of 500 plant species using SDMs with a set of 30 environmental predictors. Finally, we tested how they improve an ensemble of SDMs compared to a standard set of predictors for ca 60 plant species. All EIV models showed excellent performance (|r| > 0.9) and predictions were correlated reasonably (|r| > 0.4) to soil properties measured in the field. Resulting EIV maps were among the most important predictors in SDMs. Also, in ensemble SDMs overall predictive performance increased, mainly through improved model specificity reducing species range overestimation. Combining large citizen science databases to expert-based EIVs is a powerful and cost–effective approach for generalizing local edaphic and climatic conditions over large areas. Producing ecologically meaningful predictors is a first step for generating better predictions of species distribution which is of main importance for decision makers in conservation and environmental management projects.  相似文献   
998.
Tenfold uncertainty factors have been used in risk assessment for about 40 years to allow for species differences and inter-individual variability. Each factor has to allow for toxicokinetic and toxicodynamic differences. Subdividing the 10-fold factors into kinetic and dynamic defaults, which when multiplied give a product of 10, offers a number of advantages. A major advantage is that chemical-specific data can be introduced to replace one or more of the default subfactors, hence contributing to a chemical-related overall factor. Subdivision of the 10-fold factors also facilitates analysis of the appropriateness of the overall 10-fold defaults, and the development of a more refined approach to the use of uncertainty factors.  相似文献   
999.
Species distribution modelling has been widely applied in order to assess the potential impacts of climate change on biodiversity. Many methodological decisions, taken during the modelling process and forecasts, may, however, lead to a large variability in the assessment of future impacts. Using measures of species range change and turnover, the potential impacts of climate change on French stream fish species and assemblages were evaluated. Our main focus was to quantify the uncertainty in the projections of these impacts arising from four sources of uncertainty: initial datasets (Data), statistical methods [species distribution models (SDM)], general circulation models (GCM), and gas emission scenarios (GES). Several modalities of the aforementioned uncertainty sources were combined in an ensemble forecasting framework resulting in 8400 different projections. The variance explained by each source was then extracted from this whole ensemble of projections. Overall, SDM contributed to the largest variation in projections, followed by GCM, whose contribution increased over time equalling almost the proportion of variance explained by SDM in 2080. Data and GES had little influence on the variability in projections. Future projections of range change were more consistent for species with a large geographical extent (i.e., distribution along latitudinal or stream gradients) or with restricted environmental requirements (i.e., small thermal or elevation ranges). Variability in projections of turnover was spatially structured at the scale of France, indicating that certain particular geographical areas should be considered with care when projecting the potential impacts of climate change. The results of this study, therefore, emphasized that particular attention should be paid to the use of predictions ensembles resulting from the application of several statistical methods and climate models. Moreover, forecasted impacts of climate change should always be provided with an assessment of their uncertainty, so that management and conservation decisions can be taken in the full knowledge of their reliability.  相似文献   
1000.
Evaluating contributions of forest ecosystems to climate change mitigation requires well‐calibrated carbon cycle models with quantified baseline carbon stocks. An appropriate baseline for carbon accounting of natural forests at landscape scales is carbon carrying capacity (CCC); defined as the mass of carbon stored in an ecosystem under prevailing environmental conditions and natural disturbance regimes but excluding anthropogenic disturbance. Carbon models require empirical measurements for input and calibration, such as net primary production (NPP) and total ecosystem carbon stock (equivalent to CCC at equilibrium). We sought to improve model calibration by addressing three sources of errors that cause uncertainty in carbon accounting across heterogeneous landscapes: (1) data‐model representation, (2) data‐object representation, (3) up‐scaling. We derived spatially explicit empirical models based on environmental variables across landscape scales to estimate NPP (based on a synthesis of global site data of NPP and gross primary productivity, n=27), and CCC (based on site data of carbon stocks in natural eucalypt forests of southeast Australia, n=284). The models significantly improved predictions, each accounting for 51% of the variance. Our methods to reduce uncertainty in baseline carbon stocks, such as using appropriate calibration data from sites with minimal human disturbance, measurements of large trees and incorporating environmental variability across the landscape, have generic application to other regions and ecosystem types. These analyses resulted in forest CCC in southeast Australia (mean total biomass of 360 t C ha?1, with cool moist temperate forests up to 1000 t C ha?1) that are larger than estimates from other national and international (average biome 202 t C ha?1) carbon accounting systems. Reducing uncertainty in estimates of carbon stocks in natural forests is important to allow accurate accounting for losses of carbon due to human activities and sequestration of carbon by forest growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号