首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2929篇
  免费   336篇
  国内免费   424篇
  2023年   89篇
  2022年   62篇
  2021年   92篇
  2020年   129篇
  2019年   168篇
  2018年   111篇
  2017年   128篇
  2016年   140篇
  2015年   112篇
  2014年   122篇
  2013年   189篇
  2012年   124篇
  2011年   165篇
  2010年   137篇
  2009年   163篇
  2008年   154篇
  2007年   168篇
  2006年   148篇
  2005年   135篇
  2004年   106篇
  2003年   116篇
  2002年   101篇
  2001年   88篇
  2000年   67篇
  1999年   45篇
  1998年   55篇
  1997年   43篇
  1996年   37篇
  1995年   36篇
  1994年   35篇
  1993年   40篇
  1992年   32篇
  1991年   35篇
  1990年   15篇
  1989年   29篇
  1988年   18篇
  1987年   28篇
  1986年   17篇
  1985年   16篇
  1984年   20篇
  1983年   10篇
  1982年   26篇
  1981年   19篇
  1980年   13篇
  1979年   17篇
  1978年   15篇
  1977年   13篇
  1976年   14篇
  1975年   11篇
  1974年   11篇
排序方式: 共有3689条查询结果,搜索用时 265 毫秒
171.
Even though the efficiency of the polymerase chain reaction (PCR) reaction decreases, analyses are made in terms of Galton-Watson processes, or simple deterministic models with constant replication probability (efficiency). Recently, Schnell and Mendoza have suggested that the form of the efficiency, can be derived from enzyme kinetics. This results in the sequence of molecules numbers forming a stochastic process with the properties of a branching process with population size dependence, which is supercritical, but has a mean reproduction number that approaches one. Such processes display ultimate linear growth, after an initial exponential phase, as is the case in PCR. It is also shown that the resulting stochastic process for a large Michaelis-Menten constant behaves like the deterministic sequence x(n) arising by iterations of the function f(x)=x+x/(1+x).  相似文献   
172.
A first-order-like state transition is considered to be involved in the restoration of the activities of a few proteins by correctly folding the protein [Phys. Rev. E 66 (2002) 021903]. In order to understand the general applicability of this mechanism, we studied a metallothionein (MT) protein with an unconventional structure, i.e., without any alpha-helix or beta-sheet. MT is a 61 amino-acid peptide. There are 6-7 Zn(2+) ions, which bind avidly to 20 conserved cysteines (Cys) of MT. These properties indicate that the structure of MT is quite different from those of the other proteins. Similar to our previous findings, the denatured MT can be folded without any aggregation via a designated stepwise quasi-static process (an over-critical reaction path). The particle size of folded MT intermediates, determined by dynamic light scattering, shrank right after the first folding stage. It is consistent with a collapse-model. In addition, results from both atomic absorption and circular dichroism (CD) indicate that the stable intermediates may fold to the native conformation but with only partial Zn(2+) binding, which in turn implies that those folding intermediates are in a molten globular state. These reversible unfolding and folding processes indicate that Cys-rich protein, MT, may also be folded by way of a first-order-like state transition mechanism. We suspect that this process may likely be involved in the reaction of the metal substitution process in metal containing enzymes.  相似文献   
173.
174.
175.
176.
In this article, we describe a new approach that allows the prediction of the performance of a large-scale integrated process for the primary recovery of a therapeutic antibody from an analysis of the individual unit operations and their interactions in an ultra scale-down mimic of the process. The recovery process consisted of four distinct unit operations. Using the new approach we defined the important engineering parameters in each operation that impacted the overall recovery process and in each case verified its effect by a combination of modelling and experimentation. Immunoglobulins were precipitated from large volumes of dilute blood plasma and the precipitated flocs were recovered by centrifugal separation from the liquor containing contaminating proteins, including albumin. The fluid mechanical forces acting on the precipitate and the time of exposure to these forces were used to define a time-integrated fluid stress. This was used as a scaling factor to predict the properties of the precipitated flocs at large scale. In the case of centrifugation, the performance of a full-scale disc stack centrifuge was predicted. This was achieved from a computational fluid dynamics (CFD) analysis of the flow field in the centrifuge coupled with experimental data obtained from the precipitated immunoglobulin flocs using the scale-down precipitation tank, a rotating shear device, and a standard swing-out rotor centrifuge operating under defined conditions. In this way, the performance of the individual unit operations, and their linkage, was successfully analysed from a combination of modelling and experiments. These experiments required only millilitre quantities of the process material. The overall performance of the large-scale process was predicted by tracking the changes in physical and biological properties of the key components in the system, including the size distribution of the antibody precipitates and antibody activity through the individual unit operations in the ultra scale-down process flowsheet.  相似文献   
177.
Neuregulins: functions,forms, and signaling strategies   总被引:35,自引:0,他引:35  
The neuregulins (NRGs) are cell-cell signaling proteins that are ligands for receptor tyrosine kinases of the ErbB family. The neuregulin family of genes has four members: NRG1, NRG2, NRG3, and NRG4. Relatively little is known about the biological functions of the NRG2, 3, and 4 proteins, and they are considered in this review only briefly. The NRG1 proteins play essential roles in the nervous system, heart, and breast. There is also evidence for involvement of NRG signaling in the development and function of several other organ systems, and in human disease, including the pathogenesis of schizophrenia and breast cancer. There are many NRG1 isoforms, raising the question "Why so many neuregulins?" Study of mice with targeted mutations ("knockout mice") has demonstrated that isoforms differing in their N-terminal region or in their epidermal growth factor (EGF)-like domain differ in their in vivo functions. These differences in function might arise because of differences in expression pattern or might reflect differences in intrinsic biological characteristics. While differences in expression pattern certainly contribute to the observed differences in in vivo functions, there are also marked differences in intrinsic characteristics that may tailor isoforms for specific signaling requirements, a theme that will be emphasized in this review.  相似文献   
178.
Cell culture process changes (e.g., changes in scale, medium formulation, operational conditions) and cell line changes are common during the development life cycle of a therapeutic protein. To ensure that the impact of such process changes on product quality and safety is minimal, it is standard practice to compare critical product quality and safety attributes before and after the changes. One potential concern introduced by cell culture process improvements is the possibility of increased endogenous retrovirus expression to a level above the clearance capability of the subsequent purification process. To address this, retrovirus expression was measured in scaled down and full production scaled Chinese hamster ovary (CHO) cell cultures of four monoclonal antibodies and one recombinant protein before and after process changes. Two highly sensitive, quantitative (Q)-PCR-based assays were used to measure endogenous retroviruses. It is shown that cell culture process changes that primarily alter media components, nutrient feed volume, seed density, cell bank source (i.e., master cell bank vs. working cell bank), and vial size, or culture scale, singly or in combination, do not impact the rate of retrovirus expression to an extent greater than the variability of the Q-PCR assays (0.2-0.5 log(10)). Cell culture changes that significantly alter the metabolic state of the cells and/or rates of protein expression (e.g., pH and temperature shifts, NaButyrate addition) measurably impact the rate of retrovirus synthesis (up to 2 log(10)). The greatest degree of variation in endogenous retrovirus expression was observed between individual cell lines (up to 3 log(10)). These data support the practice of measuring endogenous retrovirus output for each new cell line introduced into manufacturing or after process changes that significantly increase product-specific productivity or alter the metabolic state, but suggest that reassessment of retrovirus expression after other process changes may be unnecessary.  相似文献   
179.
180.
Application of two-phase partitioning bioreactors (TPPB) to the degradation of phenol and xenobiotics has been limited by the fact that many organic compounds that would otherwise be desirable delivery solvents can be utilized by the microorganisms employed. The ability to metabolize the solvent itself could interfere with xenobiotic degradation, limiting remediation efficiency, and hence represents a microbial characteristic incompatible with process goals. To avoid the issue of bioavailability, previous TPPB applications have relied on complex and often expensive delivery solvents or suboptimal catalyst-solvent pairings. In an effort to enhance TPPB activity and applicability, a genetically engineered derivative of Pseudomonas putida ATCC 11172 mutated in its ability to utilize medium-chain-length alcohols was generated (AVP2) and applied as the catalyst within a TPPB system with decanol as the delivery solvent. Kinetic analysis verified that the genetic alteration had not negatively affected phenol degradation. The volumetric productivity of AVP2 (0.48 g/L x h(-1)) was equivalent to that seen for wild-type ATCC 11172 (0.51 g/L x h(-1)), but a comparison of initial cell concentrations and yields revealed an improved phenol-degrading efficiency for the mutant under process conditions. Yield coefficients, cell dry weight, and viable count determinations all confirmed the stability of the modified phenotype. This work illustrates the possibilities for TPPB process enhancement through a careful combination of genetic modification and solvent selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号