首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54835篇
  免费   3968篇
  国内免费   3181篇
  2024年   60篇
  2023年   630篇
  2022年   1130篇
  2021年   1352篇
  2020年   1237篇
  2019年   1615篇
  2018年   1622篇
  2017年   1152篇
  2016年   1328篇
  2015年   1911篇
  2014年   2803篇
  2013年   3809篇
  2012年   2048篇
  2011年   2851篇
  2010年   2275篇
  2009年   2882篇
  2008年   3090篇
  2007年   3148篇
  2006年   2868篇
  2005年   2829篇
  2004年   2487篇
  2003年   2220篇
  2002年   2060篇
  2001年   1363篇
  2000年   1161篇
  1999年   1252篇
  1998年   1255篇
  1997年   1054篇
  1996年   842篇
  1995年   939篇
  1994年   865篇
  1993年   773篇
  1992年   680篇
  1991年   487篇
  1990年   396篇
  1989年   366篇
  1988年   383篇
  1987年   339篇
  1986年   281篇
  1985年   332篇
  1984年   449篇
  1983年   300篇
  1982年   298篇
  1981年   185篇
  1980年   173篇
  1979年   146篇
  1978年   85篇
  1977年   47篇
  1976年   43篇
  1975年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Glycogen synthase was partially purified from canine brain to about 70% purity. The purified enzyme showed differences from the properties of the skeletal muscle enzyme with respect to molecular weights of the holoenzyme and subunit and phosphopeptide mapping. The multifunctional calmodulin-dependent protein kinase from the brain phosphorylated brain glycogen synthase with concomitant inactivation of the enzyme. Although about 1.3 mol of phosphate/mol subunit was maximally incorporated into glycogen synthase, 0.4 mol of phosphate/mol subunit was sufficient for the maximal inactivation of the enzyme. The results indicate that brain glycogen synthase is regulated in a calmodulin-dependent manner similarly to the skeletal muscle enzyme, but that the brain enzyme is different from the skeletal muscle enzyme.  相似文献   
132.
The endogenous phosphorylation of serotonin binding protein (SBP), a soluble protein found in central and peripheral serotonergic neurons, inhibits the binding of 5-hydroxytryptamine (5-HT, serotonin). A protein kinase activity that copurifies with SBP (SBP-kinase) was partially characterized and compared with calcium/calmodulin-dependent protein kinase II (CAM-PK II). SBP itself is not the enzyme since heating destroyed the protein kinase activity without affecting the capacity of the protein to bind [3H]5-HT. SBP-kinase and CAM-PK II kinase shared the following characteristics: (1) size of the subunits; (2) autophosphorylation in a Ca2+-dependent manner; and (3) affinity for Ca2+. In addition, both forms of protein kinase phosphorylated microtubule-associated proteins well and did not phosphorylate myosin, phosphorylase b, and casein. Phorbol esters or diacylglycerol had no effect on either of the protein kinases. However, substantial differences between SBP-kinase and CAM-PK II were observed: (1) CAM enhanced CAM-PK II activity, but had no effect on SBP-kinase; (2) synapsin I was an excellent substrate for CAM-PK II, but not for SBP-kinase; (3) 5-HT inhibited both the autophosphorylation of SBP-kinase and the phosphorylation of SBP, but had no effect on CAM-PK II. These data indicate that SBP-kinase is different from CAM-PK II. Phosphopeptide maps of SBP and SBP-kinase generated by digestion with S. aureus V8 protease are consistent with the conclusion that these proteins are distinct molecular entities. It is suggested that phosphorylation of SBP may regulate the transport of 5-HT within neurons.  相似文献   
133.
Pretreatment of membranes from rat cerebral cortex with N-ethylmaleimide (NEM) decreased [3H]-clonidine binding in a concentration-dependent manner. The Bmax values of high-affinity sites for [3H]clonidine were reduced by 50 microM NEM treatment. Treatment with 500 microM NEM diminished the sum of Bmax of both high- and low-affinity components. GTP, Na+, and Mn2+ exerted little effect on [3H]clonidine binding in NEM-treated membranes. The addition of purified GTP-binding proteins caused an increase in the binding to the membranes pretreated with 50 microM NEM, but did not increase [3H]-clonidine binding in membranes treated with 500 microM NEM. In contrast, NEM pretreatment inhibited islet activating protein (IAP)-catalyzed ADP ribosylation of membrane-bound (41,000-dalton) and purified (39,000/41,000-dalton) GTP-binding proteins. From these results, it is suggested that two or three categories of essential sulfhydryl groups are involved in the coupling between agonist, alpha 2-adrenoceptor, and GTP-binding protein. One is a highly sensitive site to NEM (a concentration range of 1-50 microM), which is probably a cysteine residue, IAP-catalyzed ADP-ribosylating site on the alpha-subunit of GTP-binding protein. Other sites have low sensitivity to NEM (a concentration range of 0.1-1 mM), and are the binding domain of agonist and/or the coupling domain of GTP-binding protein on the alpha 2-adrenoceptor. In addition, Ki-ras p21 protein may lack the capacity to couple with the alpha 2-adrenoceptor.  相似文献   
134.
135.
Tyrosine hydroxylase purified from rat pheochromocytoma was phosphorylated and activated by purified cyclic GMP-dependent protein kinase as well as by cyclic AMP-dependent protein kinase catalytic subunit. The extent of activation was correlated with the degree of phosphate incorporated into the enzyme. Comparable stoichiometric ratios (0.6 mol phosphate/mol tyrosine hydroxylase subunit) were obtained at maximal concentrations of either cyclic AMP-dependent or cyclic GMP-dependent protein kinases. The enzymes appeared to mediate the phosphorylation of the same residue based on the observation that incorporation was not increased when both enzymes were present. The major tryptic phosphopeptide obtained from tyrosine hydroxylase phosphorylated by each protein kinase exhibited an identical retention time following HPLC. The purified phosphopeptides also exhibited identical isoelectric points. These data provide support for the notion that the protein kinases are phosphorylating the same residue of tyrosine hydroxylase.  相似文献   
136.
A "fatigue" of acetylcholine (ACh) release is described in cholinergic synaptosomes stimulated with the calcium ionophore A23187 or gramicidin. A small conditioning calcium entry, which did not trigger a large ACh release, led to a decrease of transmitter release elicited by a second large calcium influx. This fatigue was half-maximal at approximately 30 microM external calcium and developed in a few minutes. In contrast, activation of release by calcium was very rapid and was half-maximal at approximately 0.5 mM external calcium. Activation and desensitization of release could be attributed to the recently identified presynaptic membrane protein, the "mediatophore." Proteoliposomes equipped with purified mediatophore showed a calcium-dependent activation and "fatigue" of ACh release similar to that of synaptosomes. It was found that the ionophore A23187 rapidly equilibrated internal and external calcium concentrations in proteoliposomes. Thus, the external calcium concentration gave the internal concentration required for activation or desensitization of proteoliposomal ACh release. The mediatophore showed remarkable calcium binding properties (20 sites/molecule) with a KD of 25 microM. The physiological implications of desensitization on the organization of release sites are discussed.  相似文献   
137.
S-100 protein in clonal GA-1 and C6 rat glioma cell lines was released in serum-free medium supplemented with adrenocorticotropic hormone (ACTH). The induction of S-100 protein release by ACTH was dose-dependent, showing a half-maximal release at about 5 microM, and the S-100 protein concentration in the medium increased sharply within 3 min, but slightly during further incubation. The S-100 protein release was apparently accompanied by a decrease in the membrane-bound form of S-100 protein in the cell. The S-100 protein release was induced not by the ACTH1-24 fragment, which exhibits the known effects of ACTH, but by the ACTH18-39 fragment, which is designated as corticotropin-like intermediate-lobe peptide (CLIP). These results indicate that the C-terminal half of ACTH is responsible for the S-100 protein release. The enhancement of S-100 protein release by ACTH was also observed in normal rat glioblasts. The release induced by ACTH was apparently specific to S-100 protein, because little release of the cytoplasmic enzymes, creatine kinase, and enolase was observed under the same conditions. High concentrations (5 mM) of dibutyryl cyclic AMP or dibutyryl cyclic GMP were also found to induce S-100 protein release; however, catecholamines (epinephrine, norepinephrine, isoproterenol, and dopamine), acetylcholine, and glutamic acid did not enhance the release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
138.
Rubrophilin, a unique brain specific polypeptide, was purified to apparent homogeneity from microsomal fractions of bovine brains. The peptide stains pink with Coomassie Brilliant Blue R-250 (C.I. No. 42660) under specific conditions, has an apparent Mr of 53,000, and is acidic with an apparent pI of 4.9. The purification involves initial solubilization of delipidated microsomes in sodium dodecyl sulfate, followed by ammonium sulfate fractionation, reversed ammonium sulfate gradient elution from diatomaceous earth, gel filtration on polyacrylamide (Biogel P-200), gradient elution chromatography from hydroxylapatite, and reverse-phase chromatography from phenyl-Sepharose. A yield of about 5 mg of rubrophilin was obtained from 9 g of microsomal proteins. Amino acid analysis shows that rubrophilin contains only nine amino acids with residues/mol as follows: alanine (102), glutamic acid (97), lysine (65), proline (55), aspartic acid (48), glycine (44), serine (37), threonine (35), and valine (10). Cysteine, methionine, tryptophan, tyrosine, isoleucine, phenylalanine, histidine, and arginine could not be detected. Relative rubrophilin content of vertebrate brains was as follows: mammals greater than birds greater than reptiles greater than fishes. It is present in mouse retina and human neuroblastoma cell cultures but could not be detected in octopus optic lobe or in cultured C-6 rat glioma cells.  相似文献   
139.
The distribution of the DBP (vitamin D binding protein) polymorphism is now well characterized among human populations but for primates only limited results are known. The aim of this paper is to describe the electrophoretic polymorphism of this protein among various species. Using three different electrophoretic methods, we are able to detect an unknown polymorphism and to classify the different alleles observed. These results may be used to set an international nomenclature for further comparisons. The different electrophoretic mobilities between Old and New World Monkeys show that: 1) the Cercopithecoïdea are presenting the largest genetic heterogeneity; 2) the DBP among the Galago corresponds to the lowest isoelectric points observed among Primates; 3) during the evolution from nonhuman Primates to Man, the DBP is able to keep its affinity for vitamin D derivatives despite the occurrence of significant molecular modifications; 4) among Anthropoïdea, the electrophoretic patterns of DBP are very close to the human Gc 1 proteins. These results show that evolution at the DBP level can be considered as a continous mechanism of structural modifications. A significant transition occurs during the differentiation between Cercopithecoïdea and Anthropoïdea. It is not too speculative to consider that some electrophoretic forms detected among Gorilla, Pongo, or Pan may be identical to rare variants observed among humans.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号