首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   4篇
  2020年   2篇
  2019年   6篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
11.
This paper provides a panbiogeographical analysis of the endemic plant families and the palms of New Caledonia. There are three endemic plant families in New Caledonia and several genera that were previously recognized as endemic families. Of these taxa, some are sister to widespread Northern Hemisphere or global groups (Canacomyrica, Austrotaxus, Amborella). The others belong to trans‐Indian Ocean groups (Strasburgeria), trans‐tropical Pacific groups (Oncotheca) or Tasman Sea/Coral Sea groups (Phelline, Paracryphia) that are sister to widespread Northern Hemisphere or global groups. In palms, the four clades show allopatric regional connections in, respectively: (1) western Indonesia, Malaysia and Thailand; (2) Vanuatu/Fiji and the southern Ryukyu Islands near Taiwan; (3) the western Tasman/Coral Sea (eastern Australia, New Guinea and the Solomon Islands); and (4) the eastern Tasman/Coral Sea (Lord Howe and Norfolk Islands, New Zealand, Vanuatu, Fiji and the Solomon Islands). The four clades thus belong to different centres of endemism that overlap in New Caledonia. The patterns are attributed not to chance dispersal and adaptive radiation but to the different histories of the eight terranes that fused to produce modern New Caledonia. Trans‐tropical Pacific connections can be related to the Cretaceous igneous plateaus that formed in the central Pacific and were carried, with plate movement, west to the Solomon Islands and New Zealand, and east to Colombia and the Caribbean.  相似文献   
12.
The island of Sulawesi formed from the joining of proto-islands roughly three million years ago. Regions of zoological endemism, corresponding to the proto-islands, have been reported. Sulawesi's tree communities, however, remain poorly documented. In better-studied tropical regions, soil types similar to those found in Sulawesi often have distinctive tree communities. To gather data on Sulawesi's tree communities, we established ten (0.25 ha) plots on four soil types across three regions. We documented diversity, endemism, dominance, and species composition. Linear models of species composition showed greater influence of geographic distance rather than soil, and no relationship with climate. This suggests that the legacy of Sulawesi's formation may have influenced tree communities more so than the soil types we sampled. Most of our plots were on stressful soil types making it difficult to conclude on the importance of edaphic specialization in the Sulawesi tree flora. The lack of climatic effects reflects Sulawesi's position within the wet tropics where the small climatic differences are unlikely to have large influence on tree communities.  相似文献   
13.
Background: Diversity patterns of plant communities are related to the environment, including productivity and patchiness of habitat.

Aims: To determine differences in diversity patterns between serpentine and non-serpentine communities.

Methods: A two-year study was conducted in native eastern Mediterranean grasslands. For each year 40 0.25 m2 plots were sampled across four pairs of sites, each of which contained a serpentine and an adjacent non-serpentine plant community. Alpha and beta diversity (variation in species composition among plots within localities), species composition and biomass production were determined. Total soil elemental concentrations and pH were also measured.

Results: Serpentine habitats were shown to support a lower alpha diversity relative to non-serpentine habitatas on a per plot basis. Differences in alpha diversity between the two substrates were associated with variation in soil chemistry rather than above-ground biomass production. Serpentine habitats also exhibited lower beta diversity, which was unrelated to variation in biomass production. The two contrasting communities presented distinct species composition.

Conclusions: Differences in diversity patterns between serpentine and non-serpentine communities in the eastern Mediterranean are influenced by soil chemistry rather than biomass production.  相似文献   

14.
Magnetic minerals, such as magnetite and hematite, have been reported to be present, in particular, leaves as biogenic particles. The magnetic minerals and properties of Ni hyperaccumulators have not previously been reported in the literature. This study aimed to characterize the magnetic properties of two Ni hyperaccumulating plant species, R. bengalensis and P. oxyhedra, which grow in an ultramafic region on Halmahera Island, Indonesia. For comparison, similar characterization was carried out on two non-hyperaccumulating plant species which grow in the same region. Concentrations of Ni, Fe, and Mn in the leaves of the hyperaccumulating plants were measured using atomic absorption spectroscopy (AAS) and their magnetic properties were characterized using measurements of magnetic susceptibility, low temperature magnetic susceptibility, and hysteresis curves. The results show that, compared to the non-hyperaccumulating plants, the Ni hyperaccumulating plants have higher concentrations of Ni and similar concentration of Fe. The magnetic susceptibilities of hyperaccumulating plants are positive, and those of non-hyperaccumulating plants are negative. This suggests that the abundance of Ni, rather than Fe, may control the magnetic properties of Ni hyperaccumulating plants. This probable connection between Ni concentration and plant magnetic properties could be advantageous for identifying hyperaccumulators, and should, therefore, be explored further.  相似文献   
15.
The interactions between water and soil nutrient availability in determining leaf nutritional composition and structural features were investigated in forests on serpentine in Maricao and Susua (Puerto Rico). These forests grow under contrasting rainfall regimes: Maricao is a wet forest located at altitudes above 500 m and receiving more than 2500 mm rainfall, while Susua is a humid forest located well below 500 m, with less than 1500 mm rainfall and a well defined dry season. Dominant tree species and soils were analysed for N, P, K, Ca, Mg and Ni. Soils can be differentiated according to their K content (higher in Maricao) and P contents (higher in Susua). Mature leaves of both forests have sclerophyllous characteristics as judged from the Specific Leaf Areas (<80 cm2 g-1) and low P contents. Leaf area development is strongly correlated with leaf N and P contents in both forests, but Maricao samples appear to be more limited by P availability. In concordance with soil values, the Susua leaf sample set has significantly higher contents of P, but lower contents of K when compared with the Maricao sample set. Analyses of soluble K, Ca, and Mg reveal strong physiological selectivity in the absorption of these cations. K/Ca and Ca/Mg ratios are markedly higher in the soluble leaf extracts than in the soil extracts. It seems that restriction to vegetation development in the serpentine areas investigated are more related to nutritional deficiencies and not to high contents of either Mg or Ni in the upper soil layers. Only two strong Ni accumulators were found, Cassine xylocarpa (1.2 mol Ni g-1 dry mass or 70 g g-1) from Susua, and Chionanthus domingensis (12.2 mol g-1, or about 700 g g-1) from Maricao. These species are not restricted to serpentine areas in Puerto Rico.  相似文献   
16.
This study compares demographic parameters and population dynamics for high disturbance (maquis) and low disturbance (rain forest) environments of the montane conifer, Araucaria laubenfelsii, in New Caledonia. The establishment, growth, survival and reproduction of ca 2500 individuals were followed in permanent plots over 10 yr. Growth and survival rates for A. laubenfelsii show that it is a long-lived, slow growing tree, with evidence of suppression in the sapling size classes in mature rain forest. Growth rates for all size classes are generally faster in maquis than rain forest. Transition matrix analyses estimated positive rates of population increase (λ values>1), with populations expanding in maquis, and stable in mature forest. Araucaria laubenfelsii is able to regenerate continuously in maquis and early successional rain forest, but recruitment is limited in older stands. Life table response experiment analyses showed that reproduction, and transitions from sapling to mature tree stage, contributed positively to λ in maquis, but negatively in forest. Araucaria laubenfelsii on Mont Do can be considered a long-lived pioneer, with early maquis colonizers helping to drive succession from maquis to forest. While opportunities for recruitment decline with time as rain forest sites develop a closed canopy, occasional gap phase recruitment, combined with disturbance by cyclones, landslides and fire, provide opportunities to ensure species persistence. Understanding contrasting population dynamics of A. laubenfelsii in maquis and rain forest will better facilitate conservation management of this species, particularly given current high rates of land conversion and degradation in New Caledonia. Abstract in French is available at http://www.blackwell-synergy.com/loi/btp  相似文献   
17.
New Caledonia is well known for its rich and unique flora. Many studies have focused on the biogeographical origins of New Caledonian plants but rates of diversification on the island have scarcely been investigated. Here, dated phylogenetic trees from selected published studies were used to evaluate the time and tempo of diversification in New Caledonia. The 12 plant lineages investigated all appear to have colonized the island < 37 Mya, when New Caledonia re‐emerged after a period of inundation, and the timing of these arrivals is spread across the second half of the Cenozoic. Diversification rates are not particularly high and are negatively correlated with lineage age. The palms have the fastest diversification rates and also the most recent arrival times. The lineage ages of rainforest plants suggest that this ecosystem has been present for at least 6.9 Myr. The New Caledonian flora is apparently a relatively old community that may have reached a dynamic equilibrium. Colonization by new immigrants has been possible until relatively recently and diversity‐dependent processes may still be affecting the diversification rates of the earlier colonizers. Further studies on the diversification of large plant clades with exhaustive sampling should help to clarify this. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 288–298.  相似文献   
18.
The biota of New Caledonia is one of the most unusual in the world. It displays high diversity and endemism, many peculiar absences, and far‐flung biogeographic affinities. For example, New Caledonia is the only place on Earth with both main clades of flowering plants – the endemic Amborella and ‘all the rest’, and it also has the highest concentration of diversity in conifers. The discovery of Amborella's phylogenetic position led to a surge of interest in New Caledonian biogeography, and new studies are appearing at a rapid rate. This paper reviews work on the topic (mainly molecular studies) published since 2013. One current debate is focused on whether any biota survived the marine transgressions of the Paleocene and Eocene. Total submersion would imply that the entire fauna was derived by long‐distance dispersal from continental areas since the Eocene, but only if no other islands (now submerged) were emergent. A review of the literature suggests there is little actual evidence in geology for complete submersion. An alternative explanation for New Caledonia's diversity is that the archipelago acted as a refugium, and that the biota avoided the extinctions that occurred in Australia. However, this is contradicted by the many groups that are anomalously absent or depauperate in New Caledonia, although represented there by a sister group. The anomalous absences, together with the unusual levels of endemism, can both be explained by vicariance at breaks in and around New Caledonia. New Caledonia has always been situated at or near a plate boundary, and its complex geological history includes the addition of new terranes (by accretion), orogeny, and rifting. New Caledonia comprises ‘basement’ terranes that were part of Gondwana, as well as island arc and forearc terranes that accreted to the basement after it separated from Gondwana. The regional tectonic history helps explain the regional biogeography, as well as distribution patterns within New Caledonia. These include endemics on the basement terranes (for example, the basal angiosperm, Amborella), disjunctions at the West Caledonian fault zone, and great biotic differences between Grande Terre and the Loyalty Islands.  相似文献   
19.
We assessed heavy metal concentrations in feathers of 38 Kagus Rhynochetos jubatus living on ultramafic soils in New Caledonia. Concentrations of heavy metals in down feathers were similar to concentrations in shafts of primary or secondary feathers, whereas the concentrations in vanes were much higher, indicating that concentrations in down feathers were not due to external contamination but rather to ingestion. Although there was no anthropogenic pollution in our study area, concentrations of iron (Fe), zinc (Zn), manganese (Mn), chromium (Cr), selenium (Se), strontium (Sr) and cobalt (Co) in feathers were 1.2–21 times higher in Kagu than the average in other bird species studied, the majority of those from polluted environments. Kagus may have specific adaptations that enable them to live in environments with naturally high heavy metal concentrations.  相似文献   
20.
Tropical hyperaccumulators of metals and their potential for phytoextraction   总被引:13,自引:1,他引:12  
Reeves  Roger D. 《Plant and Soil》2003,249(1):57-65
Wide-ranging studies of hyperaccumulators of Ni from tropical soils of ultramafic origin were first carried out by the late Professor Robert Brooks and his co-workers in the mid-1970s. Our knowledge of tropical hyperaccumulators of Co and Cu dates from the late 1970s and 1980s, much of this having come from the work on plants of metalliferous regions of Zaïre. The contributions of Brooks and his co-workers are reviewed here, other recent published work is discussed, and new information is provided from the latest analyses of herbarium material. It is clear that many areas of serpentine and other metalliferous soils in the tropics require better investigation for the presence of metal-accumulating plant species. In some cases good botanical collections have been made, but plant and soil analysis have never been carried out, while in other areas little or no botanical or biogeochemical exploration has yet taken place. The requirements and the potential for known tropical hyperaccumulators to be used for phytoextraction (phytoremediation and/or phytomining) are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号