首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2517篇
  免费   52篇
  国内免费   104篇
  2024年   5篇
  2023年   21篇
  2022年   39篇
  2021年   33篇
  2020年   60篇
  2019年   64篇
  2018年   76篇
  2017年   60篇
  2016年   89篇
  2015年   50篇
  2014年   44篇
  2013年   671篇
  2012年   43篇
  2011年   53篇
  2010年   41篇
  2009年   68篇
  2008年   62篇
  2007年   97篇
  2006年   90篇
  2005年   67篇
  2004年   88篇
  2003年   68篇
  2002年   65篇
  2001年   45篇
  2000年   35篇
  1999年   49篇
  1998年   33篇
  1997年   30篇
  1996年   58篇
  1995年   51篇
  1994年   28篇
  1993年   26篇
  1992年   41篇
  1991年   35篇
  1990年   32篇
  1989年   37篇
  1988年   22篇
  1987年   25篇
  1986年   27篇
  1985年   27篇
  1984年   35篇
  1983年   8篇
  1982年   10篇
  1981年   19篇
  1980年   9篇
  1979年   13篇
  1978年   4篇
  1977年   5篇
  1976年   8篇
  1972年   2篇
排序方式: 共有2673条查询结果,搜索用时 15 毫秒
31.
Summary Pulses of some Ca2+ channel blockers (dantrolene, Co2+, nifedipine) and calmodulin inhibitors (chlorpromazine) lead to medium (maximally 5–9 h) phase shifts of the circadian conidiation rhythm ofNeurospora crassa. Pulses of high Ca2+, or of low Ca2+, a Ca2+ ionophore (A23187) together with Ca2+, and other Ca2+ channel blockers (La3+, diltiazem), however, caused only minor phase shifts. The effect of these substances (A 23187) and of different temperatures on the Ca2+ release from isolated vacuoles was analyzed by using the fluorescent dye Fura-2. A 23187 and higher temperatures increased the release drastically, whereas dantrolene decreased the permeation of Ca2+ (Cornelius et al., 1989).Pulses of 8-PCTP-cAMP, IBMX and of the cAMP antagonist RP-cAMPS, also caused medium (maximally 6–9 h) phase shifts of the conidiation rhythm. The phase response curve of the agonist was almost 180° out of phase with the antagonist PRC. In spite of some variability in the PRCs of these series of experiments all showed maximal shifts during ct 0–12. The variability of the response may be due to circadian changes in the activity of phosphodiesterases: After adding cAMP to mycelial extracts HPLC analysis of cAMP metabolites showed significant differences during a circadian period with a maximum at ct 0.Protein phosphorylation was tested mainly in an in vitro phosphorylation system (with35S-thio -ATP). The results showed circadian rhythmic changes predominantly in proteins of 47/48 kDa. Substances and treatments causing phase-shifts of the conidiation rhythm also caused changes in the phosphorylation of these proteins: an increase was observed when Ca2+ or cAMP were added, whereas a decrease occurred upon addition of a calmodulin inhibitor (TFP) or pretreatment of the mycelia with higher (42° C) temperatures.Altogether, the results indicate that Ca2+-calmodulin-dependent and cAMP-dependent processes play an important, but perhaps not essential, role in the clock mechanism ofNeurospora. Ca2+ calmodulin and the phosphorylation state of the 47/48-kDa proteins may have controlling or essential functions for this mechanism.  相似文献   
32.
33.
Summary 1. Corticotropin-releasing factor (CRF) is thought to be involved in the regulation of the diurnal activity of the hypothalamus-pituitary-adrenal (HPA) axis and to act as a neurotransmitter in the brain. To date it is unknown whether the binding sites of the central CRF system are subject to diurnal variations. 2. We measured the number of CRF binding sites over the course of a complete 24-hr light-dark cycle in the pituitary, amygdala, bed nucleus of the stria terminalis (BNST), cingulate cortex, visceral cortex, paraventricular nucleus of the hypothalamus, hippocampus, and locus ceruleus of rats byin vitro receptor autoradiography with iodinated ovine CRF. A 24-hr time course was also established for plasma CRF and corticosterone. 3. The diurnal pattern of plasma CRF does not correlate with the pattern of plasma corticosterone. Within the brain, CRF binding in the basolateral nucleus of the amygdala showed a U-shaped curve with maximum levels in the morning and a wide hallow between 1500 and 0100. A biphasic profile with a small depression in the afternoon and a more pronounced depression in the second half of the activity period is characteristic for the other brain areas and the pituitary. The profile for the pituitary correlates with those for the BNST and the area of the locus ceruleus. Furthermore, the diurnal pattern of CRF binding sites in the BNST correlates with that of the hippocampus, and the daytime pattern of the visceral cortex is similar to that of both the hippocampus and the BNST. 4. Since the CRF-binding profiles in the brain and the pituitary clearly differ from the profiles of both plasma CRF and corticosterone, one may assume that the diurnal pattern of central CRF binding sites is not directly coupled to the activity of the HPA axis.  相似文献   
34.
Leaves of Kalanchoë daigremontiana Hamet et Perr. at a photon flux density (PFD) above 220 mol·m–2s–1 (400–700 nm) or at leaf temperatures above 27.0 °C showed a rapid loss of rhythmicity, and a more or less pronounced damping-out of the endogenous circadian rhythm of CO2 exchange under continuous illumination. This rhythm was reinitiated after reduction of the PFD by 90–120 mol·m–2·s–1 or reduction of leaf temperature by 3.5–11.0 °C under otherwise unchanged external conditions. The reduction in the magnitude of the external control parameter of the Crassulacean acid metabolism (CAM) rhythm (i.e. PFD or leaf temperature) set the phase of the new rhythm. The maxima of CO2 uptake occurred about 5, 28, 51, 75 h after the reduction. Simulations with a CAM model under comparable conditions showed a similar behaviour. The influence of temperature on the endogenous CAM rhythm observed in K. daigremontiana in vivo could be simulated by incorporating into the model temperature-dependent switch modes for passive efflux of malate from the vacuole to the cytoplasm. Thus, the model indicates that tonoplast function plays an important role in regulation of the endogenous CAM rhythm in K. daigremontiana.Abbreviations CAM Crassulacean acid metabolism - PAR photosynthetically active radiation - PFD photon flux density This work was supported by a grant to F.B. and U.L. from Teilprojekt B5 in the Sonderforschungsbereich 199 of the Deutsche Forschungsgemeinschaft (Bonn, Germany) and by a grant to T. E. E. G. from the Sudienstiftung des deutschen Volkes (Bonn, Germany). Erika Ball is thanked for processing of time-course data for the analysis of Fourier spectra.  相似文献   
35.
The presence of time-dependent variations in the in vitro sensitivity of aorta preparations to either vasoconstricting or relaxing agents was investigated in rats maintained in light from 08: 00 to 20: 00 and in darkness from 20: 00 to 08: 00. Rat thoracic aorta rings were obtained from animals sacrificed at four different times of the day. The rat aorta was found to be more sensitive to the constricting effect of phenylephrine at 15: 00, and of 5-hydroxytryptamine at 21: 00. On the other hand, both endothelium-dependent and -independent relaxations were more remarkable at 03: 00 than at other times of the day. These variations represented significant circadian rhythms when analyzed by analysis of variance. Different in vitro responsiveness to these agents might reflect changes in the sensitivity and/or number of related receptors in vascular preparations. In conclusion, the circadian time of animal sacrifice to obtain vascular preparations constitutes an important aspect of the research method and a key determinant of findings. (Chronobiology International, 13(6), 465-475, 1996)  相似文献   
36.
37.
Most of the extensive literature concerning the resynchronization of circadian rhythms after a Zeitgeber shift is devoted to the dependence of resynchronization on the mode of the shift and the strength of the Zeitgeber, as well as on the circadian function investigated. Ontogenetic influences have rarely been investigated. Therefore, we studied the resynchronization of several circadian rhythms in juvenile and adult female laboratory mice. We present here the results concerning the corticosterone rhythm. The daily rhythms were determined as transverse profiles (2-h intervals) before as well as 3, 7, and 14 days after an 8-h phase delay of the light/dark cycle produced by a single prolongation of dark time. The corticosterone concentration in serum was determined radioimmunologically. In the control animals the daily patterns were bimodal, with main maxima at the end of the light time and secondary ones just after lights on. Ontogenetic differences were small. In adult mice the amplitude was slightly increased due to an increase in the maximum values, and the time of highest hormone concentrations was slightly phase advanced. In juvenile mice, a distinct daily pattern with a phase position in relation to the light/dark cycle corresponding to that of control animals was present on the 3rd day after the Zeitgeber shift. The daily mean as well as the minimum and maximum values increased initially and reached the values of control animals during the second week. In adult animals, a pronounced daily rhythm with the normal phase position was present only at the 7th postshift day. The amplitude, daily mean, and maximum values were decreased, and the minimum values were increased. The initial values were not reached even after 2 weeks. The results show that resynchronization was faster in juvenile mice compared with adult mice. As a possible cause for the observed age-related differences, a not yet stabilized phase-coupling between various circadian rhythms is supposed.  相似文献   
38.
The free-running period is regarded to be an exclusive feature of the endogenous circadian clock. Changes during aging in the free-running period may therefore reflect age-related changes in the internal organization of this clock. However, the literature on alterations in the free-running period in aging is not unequivocal. In the present study, with various confounding factors kept to a minimum, it was found that the free-running periods for active wakefulness, body temperature, and drinking behavior were significantly shorter (by 12-17 min) in old than in young rats. In addition, it was found that the day-to-day stability of the different sleep states was reduced in old rats, whereas that of the drinking rhythm was enhanced. Transient cycles were not observed, nor were there any age-related differences in daily totals of the various sleep-wake states. The amplitudes of the circadian rhythms of active wakefulness, quiet sleep, and temperature were reduced, whereas those of paradoxical sleep and quiet wakefulness remained unchanged.  相似文献   
39.
Diurnal variations in the concentrations of major organic compounds occurred in xylem fluid extracted from Lagerstroemia indica L. The concentration of amino acids and the N/C ratio was at a maximum and that of organic acids was at a minimum between 1230 and 2030 h. Since the concentrations of total organic nitrogen, total amino acids and most individual amino acids (but not organic acids or sugars) were also proportional to xylem tension two experiments were performed to discern whether variations in chemistry were a consequence of diurnal changes in moisture stress. In the first experiment, L. indica , exposed to variable levels of moisture stress during midday, manifested an increase in organic acids and a reduction in the N/C ratio. In the second experiment, chemical profiles of xylem fluid were collected and compared for plants exposed to a natural photoperiod, constant darkness or continuous light at noon and midnight. After 1 day amino acids increased in concentration during midday for all treatments; the variation was greatest (10-fold) for plants in constant darkness where xylem tension varied from 0.20 to 0.25 MPa. Only plants exposed to continuous light lost a diurnal rhythm after 3 days. Thus, the circadian rhythm was endogenous, terminated in continuous light and was not mediated by changes in moisture stress. Glutamine accounted for most of the diurnal variation in total amino acids, organic nitrogen and the N/C ratio in xylem fluid.  相似文献   
40.
Oxalis regnellii Mig. is a trifoliate plant, and the three leaflets usually show synchronized up and down movements with a circadian period of 26–27 h. The three leaflets can also perform desynchronized ultradian oscillations, and we report on such rhythms under different conditions. A study of the occurrence of ultradian leaf movement rhythms as a function of irradiance is presented. At an irradiance of approximately 1 μW cm−2, the occurrence was maximal and ca 30%. The periods varied from 5 to 15 h. Four other cases of ultradian rhythms in different conditions are also presented. In one case spontaneous ultradian rhythms occurred, and in another, two of the leaflets showed ultradian rhythms when the third leaflet had received a light pulse. In two more cases, the three leaflets on a leaf were separated by physical cuts along the petiole between the pulvini; in both cases the period was approximately 5 h. Possible mechanisms to explain the ultradian rhythms in Oxalis regnelli are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号