首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2523篇
  免费   23篇
  国内免费   33篇
  2023年   9篇
  2022年   5篇
  2021年   2篇
  2020年   8篇
  2019年   17篇
  2018年   13篇
  2017年   13篇
  2016年   18篇
  2015年   129篇
  2014年   286篇
  2013年   375篇
  2012年   13篇
  2011年   87篇
  2010年   18篇
  2009年   94篇
  2008年   77篇
  2007年   86篇
  2006年   88篇
  2005年   78篇
  2004年   102篇
  2003年   95篇
  2002年   91篇
  2001年   76篇
  2000年   51篇
  1999年   50篇
  1998年   61篇
  1997年   71篇
  1996年   58篇
  1995年   90篇
  1994年   85篇
  1993年   61篇
  1992年   58篇
  1991年   39篇
  1990年   51篇
  1989年   37篇
  1988年   25篇
  1987年   12篇
  1986年   7篇
  1985年   13篇
  1984年   10篇
  1983年   8篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有2579条查询结果,搜索用时 15 毫秒
51.
Effects of oxidative stress on isolated rat ventricular myocytes were studied. Myocyte viability was determined by the ability of these cells to retain rod-shaped morphology and to exclude trypan blue. The mean life time of myocytes was quantitated using the Weibull distribution function. Superfusion with 200 M tert-butyl hydroperoxide (t-BHP) led to a time-dependent loss of cell viability, generation of the products of lipid peroxidation, oxidation of protein and non-protein thiols, a decrease in [ATP]i and in the cellular energy charge. Dithiothreitol (DTT, 5 mM) prolonged survival of myocytes exposed to t-BHP, attenuated oxidation of protein and non-protein thiols, and preserved the energy charge. Exposure to DTT did not affect the concentration of t-BHP-generated lipid peroxidation products. Promethazine (1 M) prevented t-BHP-induced increase in the concentration of lipid peroxidation products, but did not prevent either loss of thiols or loss of cell viability. Superfusion with N-ethylmaleimide (NEM, 5 M) also led to loss of cell viability, with accompanying decreases in protein and non-protein thiols, ATP and energy charge without the accumulation of the products of lipid peroxidation. Superfusion with FeSO4 (400 M) and ascorbate (1 mM), (Fe-Asc) did not result in loss of cell viability or a decrease protein thiols or the energy charge. Superfusion with Fe-Asc, did, however, lead to a slight decrease in the concentration of non-protein thiols and ATP and a large increase in the concentration of lipid peroxidation products. Accumulation of lipid peroxidation products induced by Fe-Asc was prevented by promethazine. These results indicate that free radical-induced irreversible cell injury results from a loss of protein thiols. Changes in the cellular energy charge and lipid peroxidation do not bear a simple relationship to the survival of cardiac myocytes under oxidative stress.  相似文献   
52.
The effect of the antiarrhythmic drugs lidocaine, quinidine and procainamide on macrophage function was investigated in RAW 264.7 mouse monocytic macrophage cell. Cells stimulated by either zymosan or phorbol ester were found to generate both superoxide (O 2 ) and H2O2. The production of O2 was detected as superoxide dismutase inhibitable ferricytochrome c reduction. H2O2 production was monitored in both chemical and flow cytometric fluorescent assays. Although all three drugs inhibited both O2 and H2O2 release in a dose dependent manner, only quinidine was found to have significant inhibitory effects. The amounts of quinidine required to cause a 50% inhibition in O2 production in zymosan and phorbol ester stimulated cells were found to be 250 M and 300 M, respectively and the amounts required to cause one-half optimum levels of H2O2 production in these cells were found to be 50 M and 100 M, respectively. The effect of these drugs on O2 producing NADPH oxidase was investigated and only procainamide was found to have a significant effect (p<0.001) in inhibiting the oxidase activity. Lidocaine and quinidine had no significant effect on the activation of the respiratory burst oxidase. A sensitive and convenient differential phagocytosis assay was devised on the basis of number of particles engulfed by individual phagocytes using flow cytometric techniques. It appears to be remarkably free of interference and was applied to investigate the role of antiarrhythmic drugs on the phagocytosis of fluorescent latex beads. All three antiarrhythmic drugs inhibited phagocytosis of latex beads in a dose dependent manner irrespective of the number of particles phagocitized by the cells. The results of these studies do not conclusively establish a mechanism of action of these drugs on the generation of O2 and H2O2 by stimulated macrophages; nevertheless, it is interesting that all three drugs inhibited the phagocytic activity.  相似文献   
53.
Lipid peroxidation of membranes by oxygen free radicals has been implicated in various disease states. Different antioxidants and iron chelators have been used to reduce lipid peroxidation. Lazaroids have been used for the acute treatment of central nervous system disorders such as trauma and ischemia wherein lipid peroxidative processes take place.In this study we evaluated the effect of lazaroids (U-785 18F and U-74389F) on the release of acid phosphatase activity and formation of malondialdehyde (MDA) in rat liver lyosomes subjected to exogenously generated oxygen free radicals. There was a significant increase in the acid phosphatase release and MDA formation in the presence of oxygen free radicals. This was prevented by both the lazaroids. In a separate study the effect of lazaroid U-74389F was seen on the zymosan-stimulated polymorphonuclear (PMN) leukocyte-derived chemiluminescence. The PMN leukocyte chemiluminescent activity was attenuated by the lazaroid in a dose-dependent manner. These studies suggest that lazaroids may inhibit lipid peroxidation and stabilize the membrane.  相似文献   
54.
《FEBS letters》1994,340(3):269-275
Treatment of Chinese hamster ovary (CHO) cells over-expressing the human insulin receptor (CHO-HIRc) with the insulin mimetic agent, vanadate, resulted in a dose- and time-dependent tyrosine phosphorylation of two proteins with apparent molecular sizes of 42 kDa (p42) and 44 kDa (p44). However, vanadate was unable to stimulate the tyrosyi phosphorylation of theβ-subunit of the insulin receptor. By using myelin basic protein (MBP) as the substrate to measure mitogen-activated protein (MAP) kinase activity in whole cell lysates, vanadate-stimulated tyrosyl phosphorylation of p42 and p44 was associated with a dose- and time-dependent activation of MAP kinase activity. Furthermore, affinity purification of cell lysates on anti-phosphotyrosine agarose column followed by immunoblotting with a specific antibody to MAP kinases demonstrated that vanadate treatment increased the tyrosyl phosphorylation of both p44mapk and p42mapk by several folds, as compared to controls, in concert with MAP kinase activation. In addition, retardation in gel mobility further confirmed that vanadate treatment increased the phosphorylation of p44mapk and p42mapk in CHO-HIRc. A similar effect of vanadate on MAP kinase tyrosyl phosphorylation and activation was also observed in CHO cells over-expressing a protein tyrosine kinase-deficient insulin receptor (CHO-1018). These results demonstrate that the protein tyrosine kinase activity of the insulin receptor may not be required in the signaling pathways leading to the vanadate-mediated tyrosyl phosphorylation and activation of MAP kinases.  相似文献   
55.
Abstract: Recent evidence suggests that platelet-activating factor plays a role in ischemia-induced neural injury. The Pulsinelli-Brierley four-vessel occlusion model was used to study the effect of a synthetic platelet-activating factor antagonist, BN 50739, and its solvents, either dimethyl sulfoxide or hydroxypropyl-β-cyclodextrin, on cerebral ischemia-reperfusion. Rats were subjected to either 30 min of ischemia or 30 min of ischemia followed by 60 min of recirculation. Changes in the brain mitochondrial free fatty acid pool size, fatty acyl composition of phospholipids, and respiratory function were monitored. When the BN 50739 (2 mg of BN 50739/kg of body weight i.v.) was administered at the onset of recirculation, it significantly reversed the ischemia-induced accumulation of mitochondrial free fatty acids and loss of polyunsaturated fatty acyl chains from phosphatidylcholine and phosphatidylethanolamine while simultaneously improving mitochondrial respiration. Dimethyl sulfoxide alone decreased the mitochondrial level of malonyldialdehyde and total free fatty acid pool size, but there was no improvement in mitochondrial respiration. Hydroxypropyl-β-cyclodextrin was reported to be pharmacologically inactive and capable of dissolving BN 50739. However, hydroxypropyl-β-cyclodextrin alone also caused a significant increase in content of cerebral mitochondrial membrane free fatty acids and hydrolysis of phosphatidylcholine in normoxic control animals. The overall effect of BN 50739 on mitochondrial structure and energy metabolism supports the hypothesis that platelet-activating factor may play a key role in ischemia-induced cerebral injury.  相似文献   
56.
Antioxidant Properties of Bromocriptine, a Dopamine Agonist   总被引:3,自引:1,他引:2  
Abstract: It has been suggested that free radicals may adversely influence the pathogenesis of Parkinson's disease. We conducted this study to determine whether bro-mocriptine, an agent widely used for treating parkinsonism, possesses antioxidant effects. Bromocriptine scavenged superoxide produced from a superoxide generating system (hypoxanthine-xanthine oxidase) by the spin-trapping method using electron spin resonance. Bromocriptine had a strong scavenging effect on the 5,5-dimethyl-1-pyrroline- N -oxide hydroxide signal produced from Fenton's reaction. Bromocriptine also attenuated the stable free radical diphenyl- p -picrylhydrazyl signal. This drug inhibited the autooxidation of rat brain homogenates in a dose-dependent manner in vitro. Autooxidation of brain homogenates collected from rats treated with bromocriptine (2.5 mg/kg, i.p., daily for 3 days) was significantly reduced as compared with values in untreated rat homogenates. These observations suggest that bromocriptine is a free radical scavenger and a potent antioxidant.  相似文献   
57.
Abstract: Nerve growth factor (NGF) is a member of the neuro- trophin family and is required for the survival and maintenance of peripheral sympathetic and sensory ganglia. In the CNS, NGF regulates cholinergic expression by basal forebrain cholinergic neurons. NGF also stimulates cellular resistance to oxidative stress in the PC12 cell line and protects PC12 cells from the toxic effects of reactive oxygen species. The hypothesis that NGF protection involves changes in antioxidant enzyme expression was tested by measuring its effects on catalase and glutathione per- oxidase (GSH Px) mRNA expression in PC12 cells. NGF increased catalase and GSH Px mRNA levels in PC 12 cells in a time- and dose-dependent manner. There was also a corresponding increase in the enzyme activities of catalase and GSH Px. Thus, NGF can provide cytoprotection to PC12 cells by inducing the free radical scavenging enzymes catalase and GSH Px.  相似文献   
58.
In our previous experiments, evidence of free radical formation has been demonstrated in gerbil brain after kainic acid (KA) administration. In the present study, the mechanisms involved in KA-induced free radical formation and subsequent cell degeneration were investigated using high density cortical neuron cultures. A free radical trapping agent,a-phenyl-N-tert-butyl-nitrone (PBN), as well as the combined action of superoxide dismutase and catalase attenuated KA neurotoxic effect. Calpain-induced xanthine oxidase (XO) activation may play an important role in KA excitotoxicity since calpain inhibitor I as well as allopurinol, a selective XO inhibitor, significantly protected the cortical neurons from KA-induced cell death. However, XO activation may not be the only source producing free radicals, other free radical generating systems such as nitric oxide synphase may also play a role in KA insult.  相似文献   
59.
Repeated ischemic insults at one hour intervals result in more severe neuronal damage than a single similar duration insult. The mechanism for the more severe damage with repetitive ischemia is not fully understood. We hypothesized that the prolonged reperfusion periods between the relatively short ischemic insults may result in a pronounced generation of oxygen free radicals (OFRs). In this study, we tested the protective effects of superoxide dismutase (SOD) and catalase (alone or in combination), and U78517F in a gerbil model of repetitive ischemia. Three episodes (two min each) of bilateral carotid occlusion were used at one hour intervals to produce repetitive ischemia. Superoxide dismutase and catalase were infused via osmotic pumps into the lateral ventricles. Two doses of U78517F were given three times per animal, one half hour prior to each occlusion. Neuronal damage was assessed 7 days later in several brain regions using the silver staining technique. The Mann-Whitney U test was used for statistical comparison. Superoxide dismutase showed significant protection in the hippocampus (CA4), striatum, thalamus and the medial geniculate nucleus (MGN). Catalase showed significant protection in the striatum, hippocampus, thalamus, and MGN and the substantia nigra reticulata. Combination of the two resulted in additional protection in the cerebral cortex. Compared to the controls, there was little protection with a dose of 3 mg/kg of U78517F. There was significant protection with a dose of 10 mg/kg in the hippocampus (CA4), striatum, thalamus, medial geniculate nucleus and the substantia nigra reticulata. The significant protection noted with SOD, catalase or U78517F with repeated ischemia supports, the hypothesis that OFRs may play a role in neuronal damage in repeated cerebral ischemia.  相似文献   
60.
Traumatic brain injury (TBI) is one of the important causes of mortality and morbidity. The pathogenesis of the underlying brain dysfunction is poorly understood. Recent data have suggested that oxygen free radicals play a key role in the primary and secondary processes of acute TBI. We report direct electron spin resonance (ESR) evidence of hydroxyl (·OH) radical generation in closed-head injury of rats. Moderate brain concussion was produced by controlled and reproducible mechanical, fixed, closed-head injury. A cortical cup was placed over one cerebral hemisphere within 20 min of the concussion, perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent pyridyl-N-oxide-tert-butyl nitrone (POBN, 100 mM), and superfusate samples collected at 10 min intervals for a duration up to 130 min post brain trauma. In addition, POBN was administered systematically (50 mg/kg body wt.) 10 min pretrauma and 20 min posttrauma to improve our ability to detect free radicals. ESR analysis of the superfusate samples revealed six line spectra (αN = 15.4 and αβH = 2.5 G) characteristic of POBN-OH radical adducts, the intensity of which peaked 40 min posttrauma. The signal was undetectable after 120 min. Administration of α-phenyl-tert-butyl-nitrone (PBN), a spin adduct forming agent systemically (100 mg/kg body wt. IP 10 min prior to concussion) alone or along with topical PBN (100 mM PBN in aCSF),6significantly (P< 0.001) attenuated the ESR signal, suggesting its possible role in the treatment of TBI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号