首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16004篇
  免费   1013篇
  国内免费   899篇
  17916篇
  2024年   37篇
  2023年   283篇
  2022年   370篇
  2021年   410篇
  2020年   373篇
  2019年   588篇
  2018年   564篇
  2017年   377篇
  2016年   395篇
  2015年   452篇
  2014年   951篇
  2013年   1077篇
  2012年   632篇
  2011年   1041篇
  2010年   829篇
  2009年   938篇
  2008年   898篇
  2007年   906篇
  2006年   742篇
  2005年   800篇
  2004年   569篇
  2003年   414篇
  2002年   433篇
  2001年   269篇
  2000年   274篇
  1999年   274篇
  1998年   234篇
  1997年   238篇
  1996年   198篇
  1995年   213篇
  1994年   174篇
  1993年   198篇
  1992年   177篇
  1991年   152篇
  1990年   147篇
  1989年   107篇
  1988年   94篇
  1987年   91篇
  1986年   76篇
  1985年   79篇
  1984年   184篇
  1983年   125篇
  1982年   100篇
  1981年   97篇
  1980年   85篇
  1979年   87篇
  1978年   35篇
  1977年   33篇
  1976年   26篇
  1974年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
The psbP gene product, the so called 23 kDa extrinsic protein, is involved in water oxidation carried out by Photosystem II. However, the protein is not absolutely required for water oxidation. Here we have studied Photosystem II mediated electron transfer in a mutant of Chlamydomonas reinhardtii, the FUD 39 mutant, that lacks the psbP protein. When grown in dim light the Photosystem II content in thylakoid membranes of FUD 39 is approximately similar to that in the wild-type. The oxygen evolution is dependent on the presence of chloride as a cofactor, which activates the water oxidation with a dissociation constant of about 4 mM. In the mutant, the oxygen evolution is very sensitive to photoinhibition when assayed at low chloride concentrations while chloride protects against photoinhibition with a dissociation constant of about 5 mM. The photoinhibition is irreversible as oxygen evolution cannot be restored by the addition of chloride to inhibited samples. In addition the inhibition seems to be targeted primarily to the Mn-cluster in Photosystem II as the electron transfer through the remaining part of Photosystem II is photoinhibited with slower kinetics. Thus, this mutant provides an experimental system in which effects of photoinhibition induced by lesions at the donor side of Photosystem II can be studied in vivo.Abbreviations Chl chlorophyll - DCIP 2,6-dichlorophenolindophenol - DPC 2,2-diphenylcarbonic dihydrazide - HEPES 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid - P680 the primary electron donor to PS II - PpBQ phenyl-p-benzoquinone - PS II Photosystem II - QA the first quinone acceptor of PS II - QB the second quinone acceptor of PS II - SDS sodium dodecyl sulfate - Tris tris(hydroxymethyl)aminomethane - TyrD accessory electron donor on the D2-protein - TyrZ tyrosine residue, acting as electron carrier between P680 and the water oxidizing system  相似文献   
162.
We propose yet another function for the unique appressed thylakoids of grana stacks of higher plants, namely that during prolonged high light, the non-functional, photoinhibited PS II centres accumulate as D1 protein degradation is prevented and may act as dissipative conduits to protect other functional PS II centres. The need for this photoprotective mechanism to prevent high D1 protein turnover under excess photons in higher plants, especially those grown in shade, is due to conflicting demands between efficient use of low irradiance and protection from periodic exposure to excessive irradiance.  相似文献   
163.
The relationship between the size of the light harvesting antenna to photosystem II (LHCII) and quenching of non-photochemical and dark level fluorescence was studied in wild-type rye (Secale cereale L. cv. Musketeer) and barley (Hordeum vulgare L. cv. Gunilla) as well as in the barley chlorophyll b-less chlorina F2 mutant (H. vulgare L. cv. Dornaria, chlorina-F2). Exposure for 10 min to an irradiance of 500 μmol m?2 s?1 resulted in a strong (0.71–0.73) non-photochemical (qs) quenching of the fluorescence yield in wild-type (WT) material, while the barley chlorina F2-mutant was quenched to 75% of this level. Relaxation of qs in darkness revealed a fast initial decay, related to relaxation of the high-energy-state dependent (qE) part of qs. Etiolated seedlings of rye and barley exposed to intermittent light (IML) for 36 cycles of 2 min light and 118 min darkness had suppressed Chl b and LHCII-production in both WT rye and barley, while the barley chlorina F2-mutant became totally devoid of all LHCII-polypeptides. It was found that the levels of qs and qs were similar in control grown barley chlorina F2 and IML-grown WT rye and barley, but qs was reduced by 30 to 35% and qs by 50 to 65%, respectively, as compared to control-grown. WT plants. No significant qs could be detected in IML-grown barley chlorina F2. It is clear, from these changes in in vivo fluorescence quenching in rye and barley that a significant level of qs is detectable even in the absence of LHCII. Only when the proximal antennae are totally absent, does qE completely disappear. We conclude that the presence of LHCII is not an absolute requirement for qE-quenching and suggest that distal as well as proximal antenna may contribute to qE in vivo.  相似文献   
164.
Four types of differently phosphorylated hylakoids isolated from field grown spinach ( Spinacia oleracea L.) were tested for the sensitivity of photosystem II (PSII) to photoinactivation. Phosphorylation of light-harvesting II complexes (LHCII) protected PSII electron transfer from photoinhibitory damage, while the phosphorylation of the PSII core polypeptides slightly accelerated the decline of electron transfer during high irradiance treatment. Dephosphorylation of the CP43 apoprotein and PsbH protein by an alkaline phosphatase resulted in an extreme sensitivity of the thylakoids to strong illumination. The PSII photoinactivation of thylakoids with the impaired oxygen-evolving complex was found to be independent of phosphorylation.
The thylakoids of the thermophilic cyanobacterium Synechococcus elongates were used in order to compare the plants with an organism where LHCII complexes are missing and the PSII core proteins are not phosphorylated.  相似文献   
165.
Abstract Erythrogenic toxin type C (ETC) from different streptococcal group A strains was successively purified by absorption on phenylsepharose, acidic dialysis of the eluate at 40% saturated ammonium sulphate solution, CM-Sepharose chromatography, finally by immunoaffinity chromatography on monoclonal antibodies. Second, after growing of bacteria in the presence of [32P]orthophosphate to phosphorylate ETC, the ETC was purified with phenylsepharose following immunoaffinity chromatography. The occurrence of phosphoamino acids in the purified ETC was investigated by an immunoassay. No phosphoamino acids could be detected in the ETC molecule. Also after radiolabelling with 32P it was not possible to demonstrate a radioactive signal. The treatment with alkaline phosphatase has no influence on the mitogenicity or position of ETC in isoelectric focusing. The results obtained led to the conclusion that in contrast to the literature, ETC is not a phosphorylated protein.  相似文献   
166.
Previous studies have demonstrated that in glia and astrocytes Mn(II) is distributed with ca. 30–40% in the cytoplasm, 60–70% in mitochondria. Ca(II) ions were observed to alter both the flux rates and distribution of Mn(II) ions in primary cultues of chick glia and rat astrocytes. External (influxing) Ca(II) ions had the greatest effect on Mn(II) uptake and efflux, compared to internal (effluxing) or internal-external equilibrated Ca(II) ions. External (influxing) Ca(II) ions inhibited the net rate and extent of Mn(II) uptake but enhanced Mn(II) efflux from mitochondria. These observations differ from Ca(II)–Mn(II) effects previously reported with brain (neuronal) mitochondria. Overall, increased cytoplasmic Ca(II) acts to block Mn(II) uptake and enhance Mn(II) release by mitochondria, which serve to increase the cytoplasmic concentration of free Mn(II). A hypothesis is presented involving external L-glutamate acting through membrane receptors to mobilize cell Ca(II), which in turn causes mitochondrial Mn(II) to be released. Because the concentration of free cytoplasmic Mn(II) is poised near the Kd for Mn(II) with glutamine synthetase, a slight increase in cytoplasmic Mn(II) will directly enhance the activity of glutamine synthetase, which catalyzes removal of neurotoxic glutamate and ammonia.  相似文献   
167.
Iron propagation cages were settled on sand and/or rock beds in coastal areas of Hokkaido. The cage was oxidized by dissolved oxygen and the released Fe(II) diffused into the seawater around the cage. Fe(II) concentrations in the range of 10–50 nM were detected within a 20-m distance around the cage. For comparison, in the Japan Sea, the total iron concentration is less than 2 nM.Laminaria japonica was grown in an indoor semi-continuous culture system. The critical Fe level for maintaining maximum growth, and the subsistence Fe level for survival were measured. The concentrations obtained were 14–21 and 8 g Fe g–1 tissue, respectively. Iron found inL. japonica growing on rocks and/or rock beds in the Japan Sea was close to the subsistence level. However, the Fe level inL. japonica on the cage in the Japan Sea was considerably higher. The concentrations of chlorophyll-a and fucoxanthin collected from the cage were significantly higher for sporophytes, demonstrating that iron is a very important element for the growth of seaweeds.  相似文献   
168.
Vascular smooth muscle cell membranes from prehypertensive rats of the Milan hypertensive strain (MHS) were used to examine adenylyl cyclase activity and its regulation by guanine nucleotide regulatory proteins (G-proteins). Basal adenylyl cyclase activity was similar in MHS and Milan normontensive strain (MNS) membranes. Forsokolin (10?4 M) produced a significantly greater stimulatory response in MHS membranes, but this was not observed with NaF (10?2 M). Isoporterenol (10?4 M) caused a significantly decreased stimulation of adenylyl cyclase activity in MHS membranes, while prostaglandin E1 (10?5 M) produced similar responses in the two strains. Gi function and GTP responses, as observed by biphasic effects of GTP on isoproterenol-stimulated membranes, were similar in both strains. The levels of Gi2α and Gqα/G11α were similar in the two strains, while the levels of Gsα (44 and 42 kDa forms) and the β-subunit were significantly reduced by ~20% in MHS membranes. The α-subunit of Gi3 was dramatically reduced by ~80% in MHS membranes. The affinities of β-adrenergic receptors for the antagonist, cyanophindolol, were similar in the two strains; however, the number of β-adrenoceptors was substantially reduced in MHS membranes. These findings may be of relevance to altered vascular reactivity and transmembrane ion distribution observed in the MHS.  相似文献   
169.
170.
The effects of extreme phosphate (Pi) deficiency during growth on the contents of adenylates and pyridine nucleotides and the in vivo photochemical activity of photosystem II (PSII) were determined in leaves of Helianthus annuus and Zea mays grown under controlled environmental conditions. Phosphate deficiency decreased the amounts of ATP and ADP per unit leaf area and the adenylate energy charge of leaves. The amounts of oxidized pyridine nucleotides per unit leaf area decreased with Pi deficiency, but not those of reduced pyridine nucleotides. This resulted in an increase in the ratio of reduced to oxidized pyridine nucleotides in Pi-deficient leaves. Analysis of chlorophyll a fluorescence at room temperature showed that Pi deficiency decreased the efficiency of excitation capture by open PSII reaction centres (φe), the in vivo quantum yield of PSII photochemistry (φPSII) and the photochemical quenching co-efficient (qP), and increased the non-photochemical quenching co-efficient (qN) indicating possible photoinhibitory damage to PSII. Supplying Pi to Pi-deficient sunflower leaves reversed the long-term effects of Pi-deficiency on PSII photochemistry. Feeding Pi-sufficient sunflower leaves with mannose or FCCP rapidly produced effects on chlorophyll a fluorescence similar to long-term Pi-deficiency. Our results suggest a direct role of Pi and photophosphorylation on PSII photochemistry in both long-and short-term responses of photosynthetic machinery to Pi deficiency. The relationship between φPSII and the apparent quantum yield of CO2 assimilation determined at varying light intensity and 21 kPa O2 and 35 Pa CO2 partial pressures in the ambient air was linear in Pi-sufficient and Pi-deficient leaves of sunflower and maize. Calculations show that there was relatively more PSII activity per mole of CO2 assimilated by the Pi-deficient leaves. This indicates that in these leaves a greater proportion of photosynthetic electrons transported across PSII was used for processes other than CO2 reduction. Therefore, we conclude that in vivo photosynthetic electron transport through PSII did not limit photosynthesis in Pi-deficient leaves of sunflower and maize and that the decreased CO2 assimilation was a consequence of a smaller ATP content and lower energy charge which restricted production of ribulose, 1-5, bisphosphate, the acceptor for CO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号