首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14329篇
  免费   978篇
  国内免费   966篇
  2024年   27篇
  2023年   238篇
  2022年   302篇
  2021年   356篇
  2020年   341篇
  2019年   540篇
  2018年   526篇
  2017年   340篇
  2016年   368篇
  2015年   435篇
  2014年   910篇
  2013年   1058篇
  2012年   669篇
  2011年   956篇
  2010年   745篇
  2009年   844篇
  2008年   802篇
  2007年   788篇
  2006年   679篇
  2005年   677篇
  2004年   477篇
  2003年   447篇
  2002年   413篇
  2001年   267篇
  2000年   238篇
  1999年   240篇
  1998年   243篇
  1997年   195篇
  1996年   172篇
  1995年   178篇
  1994年   150篇
  1993年   141篇
  1992年   148篇
  1991年   104篇
  1990年   97篇
  1989年   81篇
  1988年   83篇
  1987年   78篇
  1986年   51篇
  1985年   85篇
  1984年   140篇
  1983年   104篇
  1982年   75篇
  1981年   88篇
  1980年   87篇
  1979年   81篇
  1978年   44篇
  1977年   37篇
  1976年   40篇
  1974年   31篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
991.
We genotyped 19 neurofibromatosis type 1 (NF1) families from French Canadians of the Quebec population with four intragenic microsatellites (IVS26-2.3, IVS27AC28.4, IVS27AC33.1, and IVS38GT53.0). Linkage analysis of the four microsatellite markers among the 19 NF1 families indicates that the four microsatellites are strongly linked with NF1 disease (LOD = 2.76-3.64). The four markers are associated (P = 0-0.077) except marker pair IVS26-2.3/IVS27AC33.1 (P = 0.18 or 0.17). However, perhaps due to the high mutation rate of the NF1 gene, no founder effect for NF1 was detected in the Quebec French Canadians.  相似文献   
992.
Reperfusion of ischemic myocardial tissue results in an increase in mitochondrial free radical production and declines in respiratory activity. The effects of ischemia and reperfusion on the activities of Krebs cycle enzymes, as well as enzymes involved in electron transport, were evaluated to provide insight into whether free radical events are likely to affect enzymatic and mitochondrial function(s). An in vivo rat model was utilized in which ischemia is induced by ligating the left anterior descending coronary artery. Reperfusion, initiated by release of the ligature, resulted in a significant decline in NADH-linked ADP-dependent mitochondrial respiration as assessed in isolated cardiac mitochondria. Assays of respiratory chain complexes revealed reduction in the activities of complex I and, to a lesser extent, complex IV exclusively during reperfusion, with no alterations in the activities of complexes II and III. Moreover, Krebs cycle enzymes alpha-ketoglutarate dehydrogenase and aconitase were susceptible to reperfusion-induced inactivation with no decline in the activities of other Krebs cycle enzymes. The decline in alpha-ketoglutarate dehydrogenase activity during reperfusion was associated with a loss in native lipoic acid on the E2 subunit, suggesting oxidative inactivation. Inhibition of complex I in vitro promotes free radical generation. alpha-Ketoglutarate dehydrogenase and aconitase are uniquely susceptible to in vitro oxidative inactivation. Thus, our results suggest a scenario in which inhibition of complex I promotes free radical production leading to oxidative inactivation of alpha-ketoglutarate dehydrogenase and aconitase.  相似文献   
993.
The mechanical resistance of a folded domain in a polyprotein of five mutant I27 domains (C47S, C63S I27)(5)is shown to depend on the unfolding history of the protein. This observation can be understood on the basis of competition between two effects, that of the changing number of domains attempting to unfold, and the progressive increase in the compliance of the polyprotein as domains unfold. We present Monte Carlo simulations that show the effect and experimental data that verify these observations. The results are confirmed using an analytical model based on transition state theory. The model and simulations also predict that the mechanical resistance of a domain depends on the stiffness of the surrounding scaffold that holds the domain in vivo, and on the length of the unfolded domain. Together, these additional factors that influence the mechanical resistance of proteins have important consequences for our understanding of natural proteins that have evolved to withstand force.  相似文献   
994.
The islet amyloid polypeptide (hIAPP) is a 37 amino acid residue polypeptide that was found to accumulate as amyloid fibrils in the pancreas of individuals with type II diabetes. Previous studies identified various fragments of hIAPP that can form amyloid fibrils in vitro (e.g. hIAPP(8-20), hIAPP(23-27), and hIAPP(30-37)). However, no comparative and systematic information was available on the role of these structural domains (or others) in the process of molecular recognition that mediates fibrillization, in the context of the full-length polypeptide. To systematically map and compare potential recognition domains, we studied the ability of hIAPP to interact with an array of 28 membrane-spotted overlapping peptides that span the entire sequence of hIAPP (i.e. hIAPP(1-10), hIAPP(2-11...), hIAPP(28-37)). Our study clearly identified a major domain of molecular recognition within hIAPP, as the polypeptide was found to bind with high affinity to a defined linear group of peptides ranging from hIAPP(7-16) to hIAPP(12-21). The maximal binding of the full-length polypeptide was to the hIAPP(11-20) peptide fragment (with the sequence RLANFLVHSS). In order to define the minimal fragment, within this apparent recognition motif, that is capable of self-association and thus may serve as the core molecular recognition motif, we examined the ability of truncated analogs of the recognition sequence to self-assemble into amyloid fibrils. The shortest active fragments capable of self-assembly were found to be the pentapeptides FLVHS and NFLVH. The apparent role of this motif in the process of hIAPP self-assembly is consistent with the profile of the hIAAP-binding distribution to the peptide array. The identification of such short recognition motifs is extremely useful in the attempts to develop means to block amyloid fibril formation by hIAPP. It is worth mentioning that this is only the second time in which peptides as short as a pentapeptide were shown to form amyloid fibrils (the other pentapeptide is FGAIL).  相似文献   
995.
The specialised ATPase FliI is central to export of flagellar axial protein subunits during flagellum assembly. We establish the normal cellular location of FliI and its regulatory accessory protein FliH in motile Salmonella typhimurium, and ascertain the regions involved in FliH(2)/FliI heterotrimerisation. Both FliI and FliH localised to the cytoplasmic membrane in the presence and in the absence of proteins making up the flagellar export machinery and basal body. Membrane association was tight, and FliI and FliH interacted with Escherichia coli phospholipids in vitro, both separately and as the preformed FliH(2)/FliI complex, in the presence or in the absence of ATP. Yeast two-hybrid analysis and pull-down assays revealed that the C-terminal half of FliH (H105-235) directs FliH homodimerisation, and interacts with the N-terminal region of FliI (I1-155), which in turn has an intra-molecular interaction with the remainder of the protein (I156-456) containing the ATPase domain. The FliH105-235 interaction with FliI was sufficient to exert the FliH-mediated down-regulation of ATPase activity. The basal ATPase activity of isolated FliI was stimulated tenfold by bacterial (acidic) phospholipids, such that activity was 100-fold higher than when bound by FliH in the absence of phospholipids. The results indicate similarities between FliI and the well-characterised SecA ATPase that energises general protein secretion. They suggest that FliI and FliH are intrinsically targeted to the inner membrane before contacting the flagellar secretion machinery, with both FliH105-235 and membrane phospholipids interacting with FliI to couple ATP hydrolysis to flagellum assembly.  相似文献   
996.
We have previously reported that the fragility of skin, tendon and bone from the oim mouse is related to a significant reduction in the intermolecular cross-linking. The oim mutation is unlikely to affect the efficacy of the lysyl oxidase, suggesting that the defect is in the molecule and fibre. We have therefore investigated the integrity of both the oim collagen molecules and the fibre by differential scanning calorimetry.The denaturation temperature of the oim molecule in solution and the fibre from tail tendon were found to be higher than the wild-type by 2.6deg.C and 1.9deg.C, respectively. With the loss of the alpha2 chain, the hydroxyproline content of the homotrimer is higher than the heterotrimer, which may account for the increase.There is a small decrease in the enthalpy of the oim fibres but it is not significant, suggesting that the amount of disorder of the triple-helical molecules and of the fibres is small and involves only a small part of the total bond energy holding the helical structure together. The difference in denaturation temperature of the skin collagen molecules (t(m)) and fibres (t(d)) is significantly lower for the oim tissues, 19.9deg.C against 23.1deg.C, indicating reduced molecular interactions and hence packing of the molecules in the fibre. Computation of the volume fraction of the water revealed that the interaxial separation of the oim fibres was indeed greater, increasing from 19.6A to 21.0A. This difference of 1.4A, equivalent to a C-C bond, would certainly decrease the ability of the telopeptide aldehyde to interact with the epsilon -amino group from an adjacent molecule and form a cross-link. We suggest, therefore, that the reduction of the cross-linking is due to increased water content of the fibre rather than a distortion of the molecular structure.The higher hydrophobicity of the alpha2 chain appears to play a role in the stabilisation of heterotrimeric type I collagen, possibly by increasing the hydrophobic interactions between the heterotrimeric molecules, thereby reducing the water content and increasing the binding of the molecules in the fibre.  相似文献   
997.
The SfiI endonuclease is a tetrameric protein with two DNA-binding clefts. It has to bind two copies of its recognition sequence, one at each cleft, before it cleaves DNA. While SfiI binds cooperatively to two cognate sites, it binds only one non-cognate DNA molecule at a time and the resultant complex is precluded from binding cognate DNA at the vacant cleft. To examine the communications between separate binding sites in a protein that synapses two segments of DNA, SfiI was tested with oligonucleotide duplexes containing its recognition sequence but with either R(p) or S(p) phosphorothioate linkages at the scissile bonds. Though SfiI has low activity on the R(p) and none against the S(p) diastereoisomer, it bound these duplexes in the same cooperative manner as oxyester duplexes, though with a reduced affinity for the S(p) derivative. It also formed complexes with one phosphorothioate-duplex and one oxyester-duplex but, when Mg(2+) was added to the hybrid complexes, the phosphorothioate moiety at one DNA-binding cleft prevented the enzyme from cleaving the oxyester duplex at the other cleft. SfiI is thus restrained from catalytic action until it recognises the correct nucleotide sequence at two DNA loci and the correct phosphodiester functions at both loci.  相似文献   
998.
999.
We have focused on activation mechanisms of calcium/calmodulin-dependent protein kinase (CaM) kinase I in the hippocampal neurons and compared them with that of CaM kinase IV. Increased activation of CaM kinase I occurred by stimulation with glutamate and depolarization in cultured rat hippocampal neurons. Similar to CaM kinases II and IV, CaM kinase I was essentially activated by stimulation with the NMDA receptor. Although both CaM kinases I and IV seem to be activated by CaM kinase kinase, the activation of CaM kinase I was persistent during stimulation with glutamate in contrast to a transient activation of CaM kinase IV. In addition, CaM kinase I was activated in a lower concentration of glutamate than that of CaM kinase IV. Depolarization-induced activation of CaM kinase I was also evident in the cultured neurons and was largely blocked by nifedipine. In the experiment with 32P-labeled cells, phosphorylation of CaM kinase I was stimulated by glutamate treatment and depolarization. The glutamate- and depolarization-induced phosphorylation was inhibited by the NMDA receptor antagonist and nifedipine, respectively. These results suggest that, although CaM kinases I and IV are activated by the NMDA receptor and depolarization stimulation, these kinase activities are differently regulated in the hippocampal neurons.  相似文献   
1000.
Monitoring gene therapy of glycogen storage disease type 1a in a mouse model was achieved using [(18)F]FDG and a dedicated animal scanner. The G6Pase knockout (KO) mice were compared to the same mice after infusion with a recombinant adenovirus containing the murine G6Pase gene (Ad-mG6Pase). Serial images of the same mouse before and after therapy were obtained and compared with wild-type (WT) mice of the same strain to determine the uptake and retention of [(18)F]FDG in the liver. Image data were acquired from heart, blood pool and liver for twenty minutes after injection of [(18)F]FDG. The retention of [(18)F]FDG was lower for the WT mice compared to the KO mice. The mice treated with adenovirus-mediated gene therapy had retention similar to that found in age-matched WT mice. These studies show that FDG can be used to monitor the G6Pase concentration in liver of WT mice as compared to G6Pase KO mice. In these mice, gene therapy returned the liver function to that found in age matched WT controls as measured by the FDG kinetics in the liver compared to that found in age matched wild type controls.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号