首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   10篇
  国内免费   6篇
  167篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   11篇
  2012年   4篇
  2011年   5篇
  2010年   7篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   9篇
  2004年   3篇
  2003年   5篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   6篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   8篇
  1985年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有167条查询结果,搜索用时 0 毫秒
41.
Summary Using Ca2+- and K+-selective microelectrodes, the cytosolic free Ca2+ and K+ concentrations were measured in mouse fibroblastic L cells. When the extracellular Ca2+ concentration exceeded several micromoles, spontaneous oscillations of the intracellular free Ca2+ concentration were observed in the submicromolar ranges. During the Ca2+ oscillations, the membrane potential was found to oscillate concomitantly. The peak of cyclic increases in the free Ca2+ level coincided in time with the peak of periodic hyperpolarizations. Both oscillations were abolished by reducing the extracellular Ca2+ concentration down to 10–7 m or by applying a Ca2+ channel blocker, nifedipine (50 m). In the presence of 0.5mm quinine, an inhibitor of Ca2+-activated K+ channel, sizable Ca2+ oscillations still persisted, while the potential oscillations were markedly suppressed. Oscillations of the intracellular K+ concentration between about 145 and 140mm were often associated with the potential oscillations. The minimum phase of the K+ concentration was always 5 to 6 sec behind the peak hyperpolarization. Thus, it is concluded that the oscillation of membrane potential results from oscillatory increases in the intracellular Ca2+ level, which, in turn, periodically stimulate Ca2+-activated K+ channels.  相似文献   
42.
A miniaturized glucose biosensor in which glucose oxidase (GOD) and poly(p-phenylenediamine) (poly-PPD) were coimmobilized at the surface of a platinum microdisk electrode was developed and used successfully for amperometric determination of glucose. The performance of sensors prepared at different monomer concentrations and polymerization potentials with different media was investigated in detail. It was found that similarly to poly(o-phenylenediamine) (poly-OPD), (poly-PPD) noticeably eliminated the electrochemical interference of ascorbic acid, uric acid, and l-cysteine. The amperometric response of glucose with the biosensor under optimal conditions exhibited a linear relationship in the range of 5.0 x 10(-5) to 3.0 x 10(-3) M with correlation coefficient 0.9995. According to the Michaelis-Menten equation, the apparent Michaelis constant for glucose and the maximum steady-state current density of the poly-PPD/GOD-modified microelectrode were 3.94 mM and 607.5 microA cm(-2), respectively. The current density of the sensor responding to glucose in the linear range can reach 160 microA cm(-2) mM(-1), which is far greater than that obtained using poly-OPD and poly(phenol) film. In addition, the stability of the sensor was examined over a 2-month period.  相似文献   
43.
Direct inkjet printing of functional inks is an emerging and promising technique for the fabrication of electrochemical energy storage devices. Electrochromic energy devices combine electrochromic and energy storage functions, providing a rising and burgeoning technology for next‐generation intelligent power sources. However, printing such devices has, in the past, required additives or other second phase materials in order to create inks with suitable rheological properties, which can lower printed device performance. Here, tungsten oxide nanocrystal inks are formulated without any additives for the printing of high‐quality tungsten oxide thin films. This allows the assembly of novel electrochromic pseudocapacitive zinc‐ion devices, which exhibit a relatively high capacity (≈260 C g?1 at 1 A g?1) with good cycling stability, a high coloration efficiency, and fast switching response. These results validate the promising features of inkjet‐printed electrochromic zinc‐ion energy storage devices in a wide range of applications in flexible electronic devices, energy‐saving buildings, and intelligent systems.  相似文献   
44.
A seawater splitting photoelectrochemical cell featuring a nanostructured tungsten trioxide photoanode that exhibits very high and stable photocurrents producing chlorine with average 70% Faradaic efficiency is described. Fabrication of the WO3 electrodes on fluorine‐doped tin oxide substrates involves a simple solution‐based method and sequential layer‐by‐layer deposition with a progressively adjusted amount of structure‐directing agent in the precursor and a two‐step annealing. Such a procedure allows tailoring of thick, highly porous, structurally stable WO3 films with a large internal photoactive surface area optimizing utilization of visible light wavelengths by the photoanode. With the application of an anodic potential of 0.76 V versus Ag/AgCl reference electrode (0.4 V below the thermodynamic Cl2/Cl? potential) in synthetic seawater, the designed WO3 photoanodes irradiated with simulated 1 sun AM 1.5G light reach currents exceeding 4.5 mA cm?2. Photocurrents close to 5 mA cm?2 are attained in the case of fresh water splitting using 1 m methane–sulfonic acid supporting electrolyte with oxygen evolved at the WO3 photoanode. The amount of formed hydrogen is determined by discharging the palladium sheet electrode employed as a cathode. Collection of hydrogen in the form of a hydride opens, more generally, the prospect of subsequently using such materials as anodes in batteries employing oxygen reduction cathodes.  相似文献   
45.
电刺激或降低细胞外的镁离子浓度,会引起N-甲基-D-天门冬氨酸受体通道的开放,造成胞内外离子浓度失平衡.使用离子选择性微电极结合脑片技术,对电刺激和低镁溶液引起的大鼠内嗅皮层游离钙和钾离子浓度及电位的动态变化的规律进行了研究。实验结果表明,电刺激和低镁溶液引起的内嗅皮层游离钙和钾离子浓度的改变,在细胞层Ⅳ-Ⅴ(皮层表面下900-1100μm)变化最大。低镁溶液引起游离钙离子浓度下降,同时钾离子浓度呈双相变化,即先增加后减少。低镁溶液灌流内嗅皮层脑片数小时后,胞外钙离子浓度持续地停留在低浓度水平,而钾离子浓度受影响较小.  相似文献   
46.
Zhao J  Wang M  Yang Z  Gong Q  Lu Y  Yang Z 《Biotechnology letters》2005,27(3):207-211
The toxic effects of furfural and acetic acid on two yeasts, Saccharomyces cerevisiae and Candida shehatae, were evaluated using an electrochemical method. Intracellular redox activities were lowered by 40% and 78% for S. cerevisiae and C. shehatae, respectively, by 8 g furfural l–1, and by 46% and 67%, respectively, by 8 g acetic acid l–1. The proposed method can accurately measure the effects of inhibitors on cell cultures.Revisions requested 27 September 2004/17 November 2004; Revisions received 15 November 2004/10 December 2004  相似文献   
47.
Here, we describe a method for producing patterned cell adhesion inside silicone tubing. A platinum (Pt) needle microelectrode was inserted through the wall of the tubing and an oxidizing agent electrochemically generated at the inserted electrode. This agent caused local detachment of the anti-biofouling heparin layer from the inner surface of the tubing. The cell-adhesive protein fibronectin selectively adsorbed onto the newly exposed surface, making it possible to initiate a localized cell culture. The electrode could be readily set in place without breaking the tubular structure and, importantly, almost no culture solution leaked from the electrode insertion site after the electrode was removed. Ionic adsorption of poly-L-lysine at the tubular region retaining a heparin coating was used to switch the heparin surface from cell-repellent to cell-adhesive, thereby facilitating the adhesion of a second cell type. The combination of the electrode-based technique with layer-by-layer deposition enabled the formation of patterned co-cultures within the semi-closed tubular structure. The utility of this approach was demonstrated by patterning co-cultures of hepatocytes or endothelial cells with fibroblasts. The controlled co-cultures inside the elastic tubing should be of value for cell-cell interaction studies following application of chemical or mechanical stimuli and for tissue engineering-based bioreactors.  相似文献   
48.
The capacity limitations of insertion‐compound cathodes has motivated interest in a sulfur cathode for a rechargeable battery cell with a metallic‐lithium anode; but irreversible capacity loss owing to solubility of intermediate Li2Sx (x = 2–8) polysulfides in the organic‐liquid electrolytes used has prevented practical application. A dual‐function cathode structure consisting of layered tungsten disulfide (WS2) supported both on the cathode current collector and on a carbon cloth interlayer (CCl) gives excellent performance in a lithium half‐cell by providing strong adsorption of the soluble Li2Sx on the WS2 with fast access to electrons from the current collector via a blocking carbon cloth interlayer.  相似文献   
49.
The activity of high-affinity glutamate transporters is essential for the normal function of the mammalian central nervous system. Using a combined pharmacological, confocal immunocytochemical, enzyme-based microsensor and fluorescence imaging approach, we examined glutamate uptake and transporter protein localization in single astrocytes of neuron-containing and neuron-free microislands prior to pre-synaptic transmitter secretion and during functional neuronal activity. Here, we report that the presence or absence of neurons strikingly affects the uptake capacity of the astroglial glutamate transporters GLT1 and GLAST1. Induction of transporter function is activated by neurons and this effect is mimicked by pre-incubation of astrocytes with micromolar concentrations of glutamate. Moreover, increased glutamate transporter activation is reproduced by endogenous release of glutamate via activation of neuronal nicotinic receptors. The increase in transport activity is dependent on neuronal release of glutamate, is associated with the local redistribution (clustering) of GLT1 and GLAST1 but is independent of transporter synthesis and of glutamate receptor activation. Together, these results suggest an activity-dependent neuronal feedback system for rapid astroglial glutamate transporter regulation where neuron-derived glutamate is the physiological signal that triggers transporter function.  相似文献   
50.
The cortex is spontaneously active, even in the absence of any particular input or motor output. During development, this activity is important for the migration and differentiation of cortex cell types and the formation of neuronal connections1. In the mature animal, ongoing activity reflects the past and the present state of an animal into which sensory stimuli are seamlessly integrated to compute future actions. Thus, a clear understanding of the organization of ongoing i.e. spontaneous activity is a prerequisite to understand cortex function. Numerous recording techniques revealed that ongoing activity in cortex is comprised of many neurons whose individual activities transiently sum to larger events that can be detected in the local field potential (LFP) with extracellular microelectrodes, or in the electroencephalogram (EEG), the magnetoencephalogram (MEG), and the BOLD signal from functional magnetic resonance imaging (fMRI). The LFP is currently the method of choice when studying neuronal population activity with high temporal and spatial resolution at the mesoscopic scale (several thousands of neurons). At the extracellular microelectrode, locally synchronized activities of spatially neighbored neurons result in rapid deflections in the LFP up to several hundreds of microvolts. When using an array of microelectrodes, the organizations of such deflections can be conveniently monitored in space and time. Neuronal avalanches describe the scale-invariant spatiotemporal organization of ongoing neuronal activity in the brain2,3. They are specific to the superficial layers of cortex as established in vitro4,5, in vivo in the anesthetized rat 6, and in the awake monkey7. Importantly, both theoretical and empirical studies2,8-10 suggest that neuronal avalanches indicate an exquisitely balanced critical state dynamics of cortex that optimizes information transfer and information processing.In order to study the mechanisms of neuronal avalanche development, maintenance, and regulation, in vitro preparations are highly beneficial, as they allow for stable recordings of avalanche activity under precisely controlled conditions. The current protocol describes how to study neuronal avalanches in vitro by taking advantage of superficial layer development in organotypic cortex cultures, i.e. slice cultures, grown on planar, integrated microelectrode arrays (MEA; see also 11-14).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号