首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   75篇
  国内免费   159篇
  2023年   16篇
  2022年   11篇
  2021年   14篇
  2020年   25篇
  2019年   23篇
  2018年   21篇
  2017年   26篇
  2016年   28篇
  2015年   33篇
  2014年   30篇
  2013年   29篇
  2012年   20篇
  2011年   27篇
  2010年   21篇
  2009年   32篇
  2008年   33篇
  2007年   39篇
  2006年   27篇
  2005年   29篇
  2004年   25篇
  2003年   22篇
  2002年   27篇
  2001年   19篇
  2000年   21篇
  1999年   13篇
  1998年   16篇
  1997年   4篇
  1996年   8篇
  1995年   11篇
  1994年   7篇
  1993年   9篇
  1992年   4篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有686条查询结果,搜索用时 15 毫秒
41.
Background: Long-term climate trends in mountain systems often vary strongly with elevation.

Aims: To evaluate elevation dependence in long-term precipitation trends in subalpine forest and alpine tundra zones of a mid-continental, mid-latitude North American mountain system and to relate such dependence to atmospheric circulation patterns.

Methods: We contrasted 59-year (1952–2010) precipitation records of two high-elevation climate stations on Niwot Ridge, Colorado Front Range, Rocky Mountains, USA. The sites, one in forest (3022 m a.s.l.) and the other in alpine tundra (3739 m), are closely located (within 7 km horizontally, ca. 700 m vertically), but differ with respect to proximity to the mountain-system crest (the Continental Divide).

Results: The sites exhibited significant differences in annual and seasonal precipitation trends, which depended strongly on their elevation and distance from the Continental Divide. Annual precipitation increased by 60 mm (+6%) per decade at the alpine site, with no significant change at the subalpine site. Seasonally, trends at the alpine site were dominated by increases in winter, which we suggest resulted from an increase in orographically generated precipitation over the Divide, driven by upper-air (700 hPa) north-westerly flow. Such a change was not evident at the subalpine site, which is less affected by orographic precipitation on north-westerly flow.

Conclusions: Elevation dependence in precipitation trends appears to have arisen from a change in upper-air flow from predominantly south-westerly to north-westerly. Dependence of precipitation trends on topographic position and season has complex implications for the ecology and hydrology of Niwot Ridge and adjacent watersheds, involving interactions among physical processes (e.g. snowpack dynamics) and biotic responses (e.g. in phenologies and ecosystem productivity).  相似文献   
42.
Aim Interpretation of fossil pollen assemblages may benefit greatly from comparisons with modern palynological and vegetation analogues. To interpret the full‐ and late‐glacial vegetation in eastern‐central Europe we compared fossil pollen assemblages from this region with modern pollen assemblages from various vegetation types in southern Siberia, which presumably include the closest modern analogues of the last‐glacial vegetation of central Europe. Location Czech and Slovak Republics (fossil pollen assemblages); Western Sayan Mountains, southern Siberia (modern pollen assemblages). Methods Eighty‐eight modern pollen spectra were sampled in 14 vegetation types of Siberian forest, tundra and steppe, and compared with the last‐glacial pollen spectra from seven central European localities using principal components analysis. Results Both full‐ and late‐glacial pollen spectra from the valleys of the Western Carpathians (altitudes 350–610 m) are similar to modern pollen spectra from southern Siberian taiga, hemiboreal forest and dwarf‐birch tundra. The full‐glacial and early late‐glacial pollen spectra from lowland river valleys in the Bohemian Massif (altitudes 185–190 m) also indicate the presence of patches of hemiboreal forest or taiga. Other late‐glacial pollen spectra from the Bohemian Massif suggest an open landscape with steppe or tundra or a mosaic of both, possibly with small patches of hemiboreal forest. Main conclusions Our results are consistent with the hypothesis that during the full glacial and late glacial, the mountain valleys of the north‐western Carpathians supported taiga or hemiboreal forest dominated by Larix, Pinus cembra, Pinus sylvestris and Picea, along with some steppic or tundra formations. Forests tended to be increasingly open or patchy towards the west (Moravian lowlands), gradually passing into the generally treeless landscape of Bohemia, with possible woodland patches in locally favourable sites.  相似文献   
43.
Long-term fertilization of acidic tussock tundra has led to changes in plant species composition, increases in aboveground production and biomass and substantial losses of soil organic carbon (SOC). Root litter is an important input to SOC pools, although little is known about fine root demography in tussock tundra. In this study, we examined the response of fine root production and live standing fine root biomass to short- and long-term fertilization, as changes in fine root demography may contribute to observed declines in SOC. Live standing fine root biomass increased with long-term fertilization, while fine root production declined, reflecting replacement of the annual fine root system of Eriophorum vaginatum, with the long-lived fine roots of Betula nana. Fine root production increased in fertilized plots during an unusually warm growing season, but remained unchanged in control plots, consistent with observations that B. nana shows a positive response to climate warming. Calculations based on a few simple assumptions suggest changes in fine root demography with long-term fertilization and species replacement could account for between 20 and 39% of the observed declines in SOC stocks.  相似文献   
44.
The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (δ 18O) was enriched (4.8 ± 0.2‰) in the DS relative to the WS (0.0 ± 0.1‰), but groundwater δ 18O remained constant between seasons (DS: 2.2 ± 0.4‰; WS: 2.1 ± 0.1‰). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil–groundwater mix (δ 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on δ 18O data, the roots of R. mangle roots were exposed to salinities of 25.4 ± 1.4 PSU, less saline than either C. jamaicense (39.1 ± 2.2 PSU) or S. portulacastrum (38.6 ± 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to global sea level rise and human-induced changes in freshwater flows.  相似文献   
45.
High mountain ecosystems are defined by low temperatures and are therefore considered to react sensitively to climate warming. Responding to observed changes in plant species richness on high peaks of the European Alps, an extensive setup of 1 m × 1 m permanent plots was established at the alpine‐nival ecotone (between 2900 and 3450 m) on Mount Schrankogel, a GLORIA master site in the central Tyrolean Alps, Austria, in 1994. Recording was repeated in a representative selection of 362 quadrats in 2004. Ten years after the first recording, we observed an average change in vascular plant species richness from 11.4 to 12.7 species per plot, an increase of 11.8% (or of at least 10.6% at a 95% confidence level). The increase in species richness involved 23 species (about 43% of all taxa found at the ecotone), comprising both alpine and nival species and was pronouncedly higher in plots with subnival/nival vegetation than in plots with alpine grassland vegetation. Only three species showed a decrease in plot occupancy: one was an annual species, one was rare, and one a common nival plant that decreased in one part of the area but increased in the uppermost part. Species cover changed in relation to altitudinal preferences of species, showing significant declines of all subnival to nival plants, whereas alpine pioneer species increased in cover. Recent climate warming in the Alps, which has been twice as high as the global average, is considered to be the primary driver of the observed differential changes in species cover. Our results indicate an ongoing range contraction of subnival to nival species at their rear (i.e. lower) edge and a concurrent expansion of alpine pioneer species at their leading edge. Although this was expected from predictive distribution models and different temperature‐related habitat preferences of alpine and nival species, we provide first evidence on – most likely – warming‐induced species declines in the high European Alps. The projected acceleration of climate warming raises concerns that this phenomenon could become the major threat to biodiversity in high mountains.  相似文献   
46.
To evaluate the suitability of wood pastures as a managing tool in subalpine regions it is essential to know more about the influence of grazing on the ground vegetation. This study assessed native plant species selection by cattle at different stocking rates, feeding habits and site preferences of cattle. Based on the results, conclusions concerning the value of silvopastoral systems in the Alps were drawn. A field study on six different wood pasture areas, grazed by cattle at different stocking rates, was accompanied by an experiment on three adjoining areas of 0.51 ha each, stocked with either three, six, or nine heifers. Plant species were recorded in plots of 20 cm × 20 cm before and after grazing, and the intensity of grazing on each species was assessed. At low stocking rates, grasses and tall species were most intensely grazed, while at higher stocking rates the intake of forbs and small species increased. Since no relationship was found between nutritional value and species preference, other factors such as accessibility of a plant seem to be important for the feeding preferences of cattle. The preference for grasses at low and medium stocking rates suggests that an increased growth of forbs might lead to an increase in plant species diversity.  相似文献   
47.
48.
塔克拉玛干沙漠南缘3种果树幼苗光合及抗逆性研究   总被引:1,自引:0,他引:1  
于2010年7~8月份,以塔克拉玛干沙漠南缘绿洲-荒漠过渡带人工种植的桑树(Morus albaL.)、沙枣(Elaeagnus angustifoliaL.)和杏树(Prunus armeniacaL.)幼苗为材料,研究了它们在相同生境条件下光合响应特征、水势、脯氨酸和可溶性糖含量等生理指标的变化,并用隶属函数值法对3种果树幼苗的抗旱性进行综合评价。结果表明:(1)3种果树幼苗光响应曲线具有相同的变化规律,当光合有效辐射(PAR)在0~200μmol.m-2.s-1之间变化时,净光合速率(A)随着PAR的增大呈直线增大,当PAR>200μmol.m-2.s-1时,A随PAR的变化呈二次曲线变化;(2)3种果树幼苗的光响应参数最大光合速率(Amax)、曲角(K)、表观量子效率(φ)、暗呼吸速率(Rday)、光饱和点(LSP)、光补偿点(LCP)以及光合色素的变化趋势并不完全一致,其中桑树具有最大的Amax、φ、Rday和叶绿素含量,而杏树的LSP最高,LCP最低,因此桑树具有最大的光能利用效率,而杏树能更有效地利用强光进行光合作用;(3)3种果树幼苗脯氨酸(Pro)、可溶性糖以及丙二醛(MDA)含量,除沙枣和杏树之间可溶性糖含量差异不显著外,其他指标含量差异在3种果树之间均达到显著水平(P<0.05);(4)在本研究期间3种果树的抗逆性表现为沙枣>桑树>杏树。研究发现,塔克拉玛干沙漠南缘绿洲-荒漠过渡带的3种果树幼苗光响应曲线变化趋势基本一致,体现了植物对环境条件适应的一致性,但是各个生理指标的变化趋势并不完全一致,这可能是由于植物种对环境条件的适应差异所导致。  相似文献   
49.
Despite nearly 100?years of edge studies, there has been little effort to document how edge responses 'cascade' to impact multi-trophic food webs. We examined changes within two, four-tiered food webs located on opposite sides of a habitat edge. Based on a 'bottom-up' resource-based model, we predicted plant resources would decline near edges, causing similar declines in specialist herbivores and their associated predators, while a generalist predator was predicted to increase due to complementary resource use. As predicted, we found declines in both specialist herbivores and predators near edges, but, contrary to expectations, this was not driven by gradients in plant resources. Instead, the increase in generalist predators near edges offers one alternative explanation for the observed declines. Furthermore, our results suggest how recent advances in food web theory could improve resource-based edge models, and vice versa.  相似文献   
50.
* Plants establishing in environments that are marginal for growth could be particularly sensitive to mycorrhizal associations. We investigated ectomycorrhizal colonization and its significance for young conifers growing at, or above, their normal limits for growth, in the alpine-treeline ecotone. * Colonization of seedlings (<1 yr old) and juveniles (2- to 10-yr-old) of Picea engelmannii and Abies lasiocarpa by Cenococcum geophilum was determined in a field study, and effects of Cenococcum on Picea seedling ecophysiology were investigated in a glasshouse. * Colonization by Cenococcum was c. 20-fold greater for juveniles than seedlings, and approximately 4-fold greater adjacent compared with approximately 7 m away from trees. Juveniles of Picea were more colonized at timberline than Abies, and the opposite relationship was observed in forest. Colonization enhanced seedling water potential, but not phosphorus concentrations or photosynthesis. * These landscape and age-dependent variations in colonization correspond well with known variations in conifer physiology and establishment near timberline. Facilitation of seedling establishment by older trees at alpine-treeline may include a below-ground, mycorrhizal component that complements previously reported effects of trees on the microclimate and ecophysiology of seedlings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号