首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   28篇
  国内免费   28篇
  2024年   1篇
  2023年   14篇
  2022年   12篇
  2021年   27篇
  2020年   20篇
  2019年   29篇
  2018年   19篇
  2017年   12篇
  2016年   13篇
  2015年   14篇
  2014年   13篇
  2013年   45篇
  2012年   20篇
  2011年   20篇
  2010年   15篇
  2009年   6篇
  2008年   9篇
  2007年   7篇
  2006年   8篇
  2005年   7篇
  2004年   3篇
  2003年   7篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1980年   2篇
排序方式: 共有352条查询结果,搜索用时 15 毫秒
281.
Although 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has a variety of carcinogenic and noncarcinogenic effects in experimental animals, its role in human carcinogenicity remain controversial. A simian virus 40-immortalized cell line from normal human breast epithelial cells with stem cells and luminal characteristics (M13SV1) was used to study whether TCDD can induce AIG positive colony formation and cause increased cell numbers in a inverted U-shaped dose–response manner. TCDD activated Akt, ERK2, and increased the expression of CYP1A1, PAI-2, IL-lb mRNA, and ERK2 protein levels. TCDD was able to increased phosphorylation and expression of ERK2 in same dose–response manner as AIG positive colony formation. Thus, TCDD induced tumorigenicity in M13SV1, possibly through the phosphorylation of ERK2 and/or Akt. Further, cDNA microarray with 7448 sequence-verified clones was used to profile various gene expression patterns after treatment of TCDD. Three clear patterns could be delineated: genes that were dose-dependently up-regulated, genes expressed in either U-shape and/or inverted U-shape. The fact that these genes are intrinsically related to breast epithelial cell proliferation and survival clearly suggests that they may be involved in the TCDD-induced breast tumorigenesis.  相似文献   
282.
It was proposed that increased level of mitochondrial reactive oxygen species (ROS), mediating execution of the aging program of an organism, could also be critical for neoplastic transformation and tumorigenesis. This proposal was addressed using new mitochondria-targeted antioxidant SkQ1 (10-(6′-plastoquinonyl) decyltriphenylphosphonium) that scavenges ROS in mitochondria at nanomolar concentrations. We found that diet supplementation with SkQ1 (5 nmol/kg per day) suppressed spontaneous development of tumors (predominantly lymphomas) in p53-/- mice. The same dose of SkQ1 inhibited the growth of human colon carcinoma HCT116/p53-/- xenografts in athymic mice. Growth of tumor xenografts of human HPV-16-associated cervical carcinoma SiHa was affected by SkQ1 only slightly, but survival of tumor-bearing animals was increased. It was also shown that SkQ1 inhibited the tumor cell proliferation, which was demonstrated for HCT116 p53-/- and SiHa cells in culture. Moreover, SkQ1 induced differentiation of various tumor cells in vitro. Coordinated SkQ1-initiated changes in cell shape, cytoskeleton organization, and E-cadherin-positive intercellular contacts were observed in epithelial tumor cells. In Ras- and SV40-transformed fibroblasts, SkQ1 was found to initiate reversal of morphological transformation of a malignant type, restoring actin stress fibers and focal adhesion contacts. SkQ1 suppressed angiogenesis in Matrigel implants, indicating that mitochondrial ROS could be important for tumor angiogenesis. This effect, however, was less pronounced in HCT116/p53-/- tumor xenografts. We have also shown that SkQ1 and related positively charged antioxidants are substrates of the P-glycoprotein multidrug resistance pump. The lower anti-tumor effect and decreased intracellular accumulation of SkQ1, found in the case of HCT116 xenografts bearing mutant forms of p53, could be related to a higher level of P-glycoprotein. The effects of traditional antioxidant N-acetyl-L-cysteine (NAC) on tumor growth and tumor cell phenotype were similar to the effects of SkQ1 but more than 1,000,000 times higher doses of NAC than those of SkQ1 were required. Extremely high efficiency of SkQ1, related to its accumulation in the mitochondrial membrane, indicates that mitochondrial ROS production is critical for tumorigenesis at least in some animal models. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. Published in Russian in Biokhimiya, 2008, Vol. 73, No. 12, pp. 1622–1640.  相似文献   
283.
Summary Hedgehog is a regulatory protein during embryonic development and its abnormal activation in adult tissues has been implicated in tumorigenesis within sites where epithelial–mesenchymal interactions take place. In the prostate, Hedgehog signaling activation was observed during advanced cancer progression and metastasis, but whether Hedgehog overexpression can initiate prostate tumorigenesis remains unknown. We introduced a Hedgehog-expressing vector by intra-prostate injection and electroporation to address the effects of Hedgehog overexpression. The manipulation caused lesions with characteristic prostatic intraepithelial neoplasia or even prostatic cancer (CaP) phenotypes within 30 days, with Hedgehog overexpression demonstrated by immunohistochemistry and Western blot detections. The tumorigenic phenotypes were confirmed by discontinuity of basal cell marker p63, mix-up of CK-8/CK-18 positive epithelial cells in the stoma as well as absence of α-SMA positive fibro-muscular sheath. Comparable Hedgehog overexpression was found in human CaP specimen. Thus, Hedgehog overexpression induced prostate tumorigenesis starting from the normal status. Furthermore, a mouse prostate cancer model induced by Hedgehog overexpression was established and may be used for testing novel therapeutical approaches targeting at Hedgehog signaling pathway.These authors have contributed equally to this work.  相似文献   
284.
Serum amyloid A (SAA) is an acute phase protein which is expressed primarily in the liver as a part of the systemic response to various injuries and inflammatory stimuli; its expression in ovarian tumors has not been described. Here, we investigated the expression of SAA in human benign and malignant ovarian epithelial tumors. Non-radioactive in situ hybridization applied on ovarian paraffin tissue sections revealed mostly negative SAA mRNA expression in normal surface epithelium. Expression was increased gradually as epithelial cells progressed through benign and borderline adenomas to primary and metastatic adenocarcinomas. Similar expression pattern of the SAA protein was observed by immunohistochemical staining. RT-PCR analysis confirmed the overexpression of the SAA1 and SAA4 genes in ovarian carcinomas compared with normal ovarian tissues. In addition, strong expression of SAA mRNA and protein was found in the ovarian carcinoma cell line OVCAR-3. Finally, patients with ovarian carcinoma had high SAA serum levels, which strongly correlated with high levels of CA-125 and C-reactive protein. Enhanced expression of SAA in ovarian carcinomas may play a role in ovarian tumorigenesis and may have therapeutic application. (J Histochem Cytochem 58:1015–1023, 2010)  相似文献   
285.
We have reported that xeroderma pigmentosum group A (Xpa) gene-knockout mice [Xpa (−/−) mice] are deficient in nucleotide excision repair (NER) and highly sensitive to UV-induced skin carcinogenesis. Although xeroderma pigmentosum group A patients show growth retardation, immature sexual development, and neurological abnormalities as well as a high incidence of UV-induced skin tumors, Xpa (−/−) mice were physiologically and behaviorally normal. In the present study, we kept Xpa (−/−) mice for 2 years under specific pathogen-free (SPF) conditions and found that the testis diminished in an age-dependent manner, and degenerating seminiferous tubules and no spermatozoa were detected in the 24-month-old Xpa (−/−) mice. In addition, a higher incidence of spontaneous tumorigenesis was observed in the 24-month-old Xpa (−/−) mice compared to Xpa (+/+) controls. Xpa (−/−) mice provide a useful model for investigating the aging and internal tumor formation in XPA patients.  相似文献   
286.
287.
288.
289.
290.
The dependence receptor hypothesis   总被引:4,自引:1,他引:3  
A new family of functionally-related receptors has recently been proposed, dubbed dependence receptors. These proteins, only some of which share sequence similarities, display the common property that they transduce two different intracellular signals: in the presence of ligand, these receptors transduce a positive signal leading to survival, differentiation or migration; conversely, in the absence of ligand, the receptors initiate or amplify a signal for programmed cell death. Thus cells that express these proteins at sufficient concentrations manifest a state of dependence on their respective ligands. The signaling that mediates cell death induction upon ligand withdrawal is in large part uncharacterized, but typically includes a required interaction with, and cleavage by, specific caspases. Here, we review the current knowledge concerning dependence receptors, including the shared mechanisms for cell death induction and their potential relevance in nervous system development and regulation of tumorigenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号