首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2335篇
  免费   229篇
  国内免费   101篇
  2024年   2篇
  2023年   36篇
  2022年   67篇
  2021年   108篇
  2020年   90篇
  2019年   112篇
  2018年   92篇
  2017年   88篇
  2016年   107篇
  2015年   129篇
  2014年   137篇
  2013年   218篇
  2012年   121篇
  2011年   130篇
  2010年   99篇
  2009年   98篇
  2008年   106篇
  2007年   145篇
  2006年   116篇
  2005年   94篇
  2004年   79篇
  2003年   65篇
  2002年   64篇
  2001年   51篇
  2000年   33篇
  1999年   35篇
  1998年   36篇
  1997年   31篇
  1996年   27篇
  1995年   23篇
  1994年   21篇
  1993年   16篇
  1992年   17篇
  1991年   9篇
  1990年   7篇
  1989年   9篇
  1988年   7篇
  1987年   8篇
  1986年   6篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
排序方式: 共有2665条查询结果,搜索用时 515 毫秒
51.
Epigenetic alterations are a common event in lung cancer and their identification can serve to inform on the carcinogenic process and provide clinically relevant biomarkers. Using paired tumor and non-tumor lung tissues from 146 individuals from three independent populations we sought to identify common changes in DNA methylation associated with the development of non-small cell lung cancer. Pathologically normal lung tissue taken at the time of cancer resection was matched to tumorous lung tissue and together were probed for methylation using Illumina GoldenGate arrays in the discovery set (n = 47 pairs) followed by bisulfite pyrosequencing for validation sets (n = 99 pairs). For each matched pair the change in methylation at each CpG was calculated (the odds ratio), and these ratios were averaged across individuals and ranked by magnitude to identify the CpGs with the greatest change in methylation associated with tumor development. We identified the top gene-loci representing an increase in methylation (HOXA9, 10.3-fold and SOX1, 5.9-fold) and decrease in methylation (DDR1, 8.1-fold). In replication testing sets, methylation was higher in tumors for HOXA9 (p < 2.2 × 10?16) and SOX1 (p < 2.2 × 10?16) and lower for DDR1 (p < 2.2 × 10?16). The magnitude and strength of these changes were consistent across squamous cell and adenocarcinoma tumors. Our data indicate that the identified genes consistently have altered methylation in lung tumors. Our identified genes should be included in translational studies that aim to develop screening for early disease detection.  相似文献   
52.
《Autophagy》2013,9(5):785-802
AMP-activated protein kinase (AMPK) is a crucial energy sensor and plays a key role in integration of cellular functions to maintain homeostasis. Despite this, it is largely unknown whether targeting the AMPK pathway can be used as a therapeutic strategy for infectious diseases. Herein, we show that AMPK activation robustly induces antibacterial autophagy, which contributes to antimicrobial defense against Mycobacterium tuberculosis (Mtb). AMPK activation led to inhibition of Mtb-induced phosphorylation of the mechanistic target of rapamycin (MTOR) in macrophages. In addition, AMPK activation increased the genes involved in oxidative phosphorylation, mitochondrial ATP production, and biogenesis in Mtb-infected macrophages. Notably, peroxisome proliferator-activated receptor-gamma, coactivator 1α (PPARGC1A) was required for AMPK-mediated antimicrobial activity, as well as enhancement of mitochondrial function and biogenesis, in macrophages. Further, the AMPK-PPARGC1A pathway was involved in the upregulation of multiple autophagy-related genes via CCAAT/enhancer binding protein (C/EBP), β (CEBPB). PPARGC1A knockdown inhibited the AMPK-mediated induction of autophagy and impaired the fusion of phagosomes with MAP1LC3B (LC3B) autophagosomes in Mtb-infected macrophages. The link between autophagy, mitochondrial function, and antimicrobial activity was further demonstrated by studying LysMCre-mediated knockout of atg7, demonstrating mitochondrial ultrastructural defects and dysfunction, as well as blockade of antimicrobial activity against mycobacteria. Collectively, our results identify the AMPK-PPARGC1A axis as contributing to autophagy activation leading to an antimicrobial response, as a novel host defense mechanism.  相似文献   
53.
54.
Group A rotavirus (RVA) rarely causes severe complications such as encephalitis/encephalopathy. However, the pathophysiology of this specific complication remains unclear. Next-generation sequence analysis was used to compare the entire genome sequences of RVAs detected in patients with encephalitis/encephalopathy and gastroenteritis. This study enrolled eight patients with RVA encephalitis/encephalopathy and 10 with RVA gastroenteritis who were treated between February 2013 and July 2014. Viral RNAs were extracted from patients' stool, and whole-genome sequencing analysis was carried out to identify the specific gene mutations in RVA obtained from patients with severe neurological complications. Among the eight encephalitis/encephalopathy cases, six strains were DS-1-like G1P[8] and the remaining two were Wa-like G1P[8] (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1). Meanwhile, eight of the 10 viruses detected in rotavirus gastroenteritis patients were DS-1-like G1P[8], and the remaining two were Wa-like G1P[8]. These strains were further characterized by conducting phylogenetic analysis. No specific clustering was demonstrated in RVAs detected from encephalitis/encephalopathy patients. Although the DS-1-like G1P[8] strain was predominant in both groups, no specific molecular characteristics were detected in RVAs from patients with severe central nervous system complications.  相似文献   
55.
Hsp16.3, a molecular chaperone, plays a vital role in the growth and survival of Mycobacterium tuberculosis inside the host. We previously reported that deletion of three amino acid residues (142STN144) from C-terminal extension (CTE) of Hsp16.3 triggers its structural perturbation and increases its chaperone activity, which reaches its apex upon the deletion of its entire CTE (141RSTN144). Thus, we hypothesized that Arg141 (R141) and Ser142 (S142) in the CTE of Hsp16.3 possibly hold the key in maintaining its native-like structure and chaperone activity. To test this hypothesis, we generated two deletion mutants in which R141 and S142 were deleted individually (Hsp16.3ΔR141 and Hsp16.3ΔS142) and three substitution mutants in which R141 was replaced by lysine (Hsp16.3R141K), alanine (Hsp16.3R141A), and glutamic acid (Hsp16.3R141E), respectively. Hsp16.3ΔS142 or Hsp16.3R141K mutant has native-like structure and chaperone activity. Deletion of R141 from the CTE (Hsp16.3ΔR141) perturbs the secondary and tertiary structure, lowers the subunit exchange dynamics and decreases the chaperone activity of Hsp16.3. But, the substitution of R141 with alanine (Hsp16.3R141A) or glutamic acid (Hsp16.3R141E) perturbs its secondary and tertiary structure. Surprisingly, such charge tampering of R141 enhances the subunit exchange dynamics and chaperone activity of Hsp16.3. Interestingly, neither the deletion of R141/S142 nor the substitution of R141 with lysine, alanine and glutamic acid affects the oligomeric mass/size of Hsp16.3. Overall, our study suggests that R141 (especially the positive charge on R141) plays a crucial role in maintaining the native-like structure as well as in regulating subunit exchange dynamics and chaperone activity of Hsp16.3.  相似文献   
56.
The spread of multidrug resistant bacteria owing to the intensive use of antibiotics is challenging current antibiotic therapies, and making the discovery and evaluation of new antimicrobial agents a high priority. The evaluation of novel peptide sequences of predicted antimicrobial peptides from different sources is valuable approach to identify alternative antibiotic leads. Two strategies were pursued in this study to evaluate novel antimicrobial peptides from the human β-defensin family (hBD). In the first, a 32-residue peptide was designed based on the alignment of all available hBD primary structures, while in the second a putative 35-residue peptide, hBD10, was mined from the gene DEFB110. Both hBDconsensus and hBD10 were chemically synthesized, folded and purified. They showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Mycobacterium tuberculosis, but were not hemolytic on human red blood cells. The NMR-based solution structure of hBDconsensus revealed that it adopts a classical β-defensin fold and disulfide connectivities. Even though the mass spectrum of hBD10 confirmed the formation of three disulfide bonds, it showed limited dispersion in 1H NMR spectra and structural studies were not pursued. The evaluation of different β-defensin structures may identify new antimicrobial agents effective against multidrug-resistant bacterial strains.  相似文献   
57.
58.
59.
Brown leaf rust (BLR) caused by Peridiopsora mori is one of the major foliar diseases of mulberry (Morus sp.) in the subtropical hills of eastern India. The disease appeared in first week of August and continued up to September with maximum severity in second and third week of September. The disease symptoms appeared at atmospheric temperature (27.00–20.07°C), relative humidity (92.14–82.43%), rainfall (11.20 cm) and rainy days (7) of the preceding week. Disease severity (>50 PDI) was observed at temperature (26.29–19.29°C), relative humidity (94.14–80.14%), rainfall (4.12 cm) and number of rainy days (2–3 days). Apparent rate of infection was found high at temperature (27.00–19.83°C), relative humidity (94.67–85.00%), rainfall (4.6 cm) and rainy days (2) of the preceding week. The correlation coefficient between disease severity and average meteorological factors of the preceding 7 days revealed that BLR disease severity showed significant negative correlation with minimum temperature. It was also revealed that contribution of maximum and minimum temperature 42.23% and 35.21%, maximum and minimum relative humidity (RH) 11.23% and 10.69% and rainfall and number of rainy days 0.11% and 0.50%, respectively towards development of BLR disease severity. Multiple regression analysis revealed that average of maximum and minimum temperatures and minimum RH of preceding 7 days were found to maximally influence BLR disease severity.  相似文献   
60.
Emerging evidence showed that the common polymorphism (+ 61A>G, rs4444903) in the promoter region of epidermal growth factor (EGF) gene might be associated with melanoma susceptibility in humans. But individually published results are inconclusive. The aim of this Human Genome Epidemiology (HuGE) review and meta-analysis is to derive a more precise estimation of the association between EGF + 61A>G polymorphism and melanoma risk. The PubMed, Embase, Web of Science and CBM databases were searched for all articles published up to July 1st, 2012. Seven case–control studies were included with a total of 2367 melanoma cases and 4184 healthy controls. Meta-analysis results showed that there was no significant relationship between EGF + 61A>G polymorphism and the risk of melanoma (G vs A: odds ratio [OR] = 1.08, 95% confidence interval [CI]: 0.91–1.28, P = 0.386; GG + AG vs AA: OR = 1.05, 95%CI: 0.88–1.26, P = 0.580; GG vs AA + AG: OR = 1.10, 95%CI: 0.81–1.49, P = 0.552; GG vs AA: OR = 1.06, 95%CI: 0.80–1.41, P = 0.700; GG vs AG: OR = 1.12, 95%CI: 0.81–1.56, P = 0.494). Further subgroup analyses based on source of controls, country, detection samples, genotype methods, and Breslow thickness of tumor, we also found no significant association between EGF + 61A>G polymorphism and melanoma risk. In conclusion, this meta-analysis indicates that EGF + 61A>G polymorphism might not be a primary determinant in melanoma development and progression; EGF gene might be expected to interact with other genes in different signaling pathways to initiate and promote the carcinogenic process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号