首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1440篇
  免费   116篇
  国内免费   48篇
  2023年   12篇
  2022年   11篇
  2021年   22篇
  2020年   31篇
  2019年   22篇
  2018年   22篇
  2017年   23篇
  2016年   47篇
  2015年   51篇
  2014年   68篇
  2013年   78篇
  2012年   69篇
  2011年   68篇
  2010年   56篇
  2009年   57篇
  2008年   63篇
  2007年   50篇
  2006年   76篇
  2005年   73篇
  2004年   89篇
  2003年   45篇
  2002年   45篇
  2001年   42篇
  2000年   41篇
  1999年   38篇
  1998年   42篇
  1997年   34篇
  1996年   44篇
  1995年   30篇
  1994年   33篇
  1993年   22篇
  1992年   19篇
  1991年   25篇
  1990年   16篇
  1989年   20篇
  1988年   12篇
  1987年   14篇
  1986年   11篇
  1985年   15篇
  1984年   12篇
  1983年   10篇
  1982年   13篇
  1981年   8篇
  1980年   7篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1971年   1篇
  1967年   1篇
排序方式: 共有1604条查询结果,搜索用时 562 毫秒
811.
Wang YY  Cheng P  Chan DW 《Proteomics》2003,3(3):243-248
Although it is possible to identify new proteins from crude cell extracts using proteomics technology, it is often difficult to elucidate low-abundant biomarkers in the presence of a large amount of high-abundant proteins in serum. We have developed a simple and rapid method using an affinity spin tube filter to remove high-abundant common proteins and enrich the low-abundant biomarkers. The affinity spin tube filter contains protein G, coupled with antibodies against either high-abundant proteins or specific proteins of interest. After incubating with serum, the flow-through or the elute was collected and analyzed by two-dimensional gel electrophoresis. By using this affinity spin tube filter, the possibilities of identifying new biomarkers are shown. This technique could be used for large-scale sample preparation for high-throughput proteomic analysis.  相似文献   
812.
Closure of the neural tube is essential for normal development of the brain and spinal cord. Failure of closure results in neural tube defects (NTDs), common and clinically severe congenital malformations whose molecular mechanisms remain poorly understood. On the other hand, it is increasingly well established that common molecular mechanisms are employed to regulate morphogenesis of multicellular organisms. For example, signaling triggered by polypeptide growth factors is highly conserved among species and utilized in multiple developmental processes. Recent studies have revealed that the Drosophila planar cell polarity (PCP) pathway, which directs position and direction of wing hairs on the surface of the fly wing, is well conserved, and orthologs of several genes encoding components of the pathway are also found in vertebrates. Interestingly, in vertebrates, this signaling pathway appears to be co-opted to regulate "convergent extension" cell movements during gastrulation. Disruption of vertebrate PCP genes in Xenopus laevis or zebrafish causes severe gastrulation defects or the shortening of the trunk, as well as mediolateral expansion of somites. In Xenopus, in which the neural tube closes by elevation and fusion of neural folds, inhibition of convergent extension can also prevent neural tube closure causing a "spina bifida-like" appearance. Furthermore, several of the genes involved in the PCP pathway have recently been shown to be required for neural tube closure in the mouse, since mutation of these genes causes NTDs. Therefore, understanding the mechanisms underlying the establishment of cell polarity in Drosophila may provide important clues to the molecular basis of NTDs.  相似文献   
813.
814.

BACKGROUND

Although folic acid decreases the incidence of neural tube defects (NTDs) in humans, the mechanism for this protection is unknown. We have employed antisense technology to alter expression of the gene for the folate receptor (folate binding protein‐1 [Folbp1]) in mouse embryos cultured in vitro.

METHODS

Embryos were explanted on day 8 of gestation and cultured for 44 hr. Several oligodeoxyribonucleotides designed to modulate the coding region or a regulatory sequence in the 5′‐untranslated region of Folbp1 were microinjected into the amniotic sac of embryos at the beginning of the culture period.

RESULTS

Two different antisense sequences to the 5′ and 3′ coding region in Folbp1 produced concentration‐dependent increases in the number of embryos with NTDs. Coinjection of 5‐methyltetrahydrofolate with these sequences decreased the frequency of abnormal embryos. A semi‐quantitative RT‐PCR technique used to measure the amount of Folbp1 mRNA in treated and control embryos confirmed that the mRNA level was decreased by treatment with the antisense sequences. An antisense oligodeoxyribonucleotide to a 17 base cis regulatory element also generated a concentration‐dependent increase in the frequency of embryos with NTDs, and a decrease in the level of Folbp1 mRNA.

CONCLUSIONS

These results demonstrate that alterations in expression of Folbp1 by perturbing either the coding sequence or a critical regulatory cis‐element can play a role in NTDs. Birth Defects Research (Part A) 67475–487, 2003. © 2003 Wiley‐Liss, Inc.
  相似文献   
815.
816.
Wang XF  Tao YB  Lu YT 《Annals of botany》2002,89(6):791-796
Using fluorescence microscopy, deposition of pollen on stigmas and pollen tube growth in the gynoecium of Sagittaria potamogetifolia Merr., a monoecious species with an apocarpous gynoecium, were observed. The maximum rate of pollination averaged 83.9 +/- 4.7 %, and the number of pollen grains per stigma ranged from zero to 30. Pollen tubes grew through one stigma to the base of the ovary at almost the same speed, but generally only one of the pollen tubes then turned towards the ovule and finally entered the nucellus through the micropyle. The other pollen tubes grew through the ovary base and the receptacle tissue into ovules of adjacent carpels whose stigmas were not pollinated or which had been pollinated later. This phenomenon is termed pollen tube 'reallocation' by the authors. To verify the direct effect of the phenomenon on fruit set, artificial pollination experiments were conducted in which two or more pollen grains were placed onto only one stigma in each gynoecium; frequently more than one fruitlet was obtained from each flower treated. The reallocation of pollen tubes among pistils in the gynoecium could effect fertilization of ovules of unpollinated pistils and lead to an increase in sexual reproduction efficiency. It would, to some extent, also increase pollen tube competition among pistils of the whole gynoecium.  相似文献   
817.
We evaluated the efficiency of callus induction and plantlet regeneration from mature cotyledonary segments of groundnut cultivars VRI-2 and VRI-3. Callus cultures were induced from mature tissues using NAA and IAA in combination with KIN or BAP. Maximum induction was recorded with 3.0 mg/L IAA and 1.0 mg/L BAP. However, green, compact, and nodular calli were obtained in 2.5 mg/L of IAA or NAA combined with 1.0 mg/L of either BAP or KIN. Fresh and dry weights were highly influenced by auxin concentration. Compact and nodular calli were then transferred to shoot induction media. The highest mean number of shoots was observed in 3.0 mg/L BAP plus 0.5 mg/L IAA. Finally, the resulting plantlets were rooted with IBA and NAA.  相似文献   
818.
819.
820.
In a screen for genes expressed in neural tissues and pronephroi, we isolated a novel gene, named dullard. Dullard protein contains the C-terminal conserved domain of NLI-IF (Nuclear LIM Interactor-Interacting Factor), a protein whose function is not yet characterized. Dullard mRNA was maternally derived and localized to the animal hemisphere. At neurula stages, the expression was in neural regions and subsequently localized to neural tissues, branchial arches, and pronephroi. Using antisense morpholino oligonucleotide-mediated inhibition, we showed that dullard was required for neural development. The translational knock-down of dullard resulted in failure of neural tube development and the embryos consequently showed a reduction of head development. Expression of neural marker genes in dullard-inhibited embryos was also suppressed. These results suggest that dullard is necessary for neural development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号