首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6991篇
  免费   578篇
  国内免费   521篇
  2023年   93篇
  2022年   94篇
  2021年   135篇
  2020年   165篇
  2019年   238篇
  2018年   248篇
  2017年   203篇
  2016年   193篇
  2015年   243篇
  2014年   346篇
  2013年   498篇
  2012年   245篇
  2011年   324篇
  2010年   257篇
  2009年   314篇
  2008年   296篇
  2007年   298篇
  2006年   284篇
  2005年   273篇
  2004年   234篇
  2003年   200篇
  2002年   187篇
  2001年   175篇
  2000年   179篇
  1999年   164篇
  1998年   164篇
  1997年   141篇
  1996年   128篇
  1995年   131篇
  1994年   122篇
  1993年   121篇
  1992年   110篇
  1991年   104篇
  1990年   107篇
  1989年   84篇
  1988年   99篇
  1987年   86篇
  1986年   65篇
  1985年   101篇
  1984年   109篇
  1983年   76篇
  1982年   76篇
  1981年   68篇
  1980年   57篇
  1979年   39篇
  1978年   39篇
  1977年   39篇
  1975年   28篇
  1974年   28篇
  1973年   30篇
排序方式: 共有8090条查询结果,搜索用时 15 毫秒
121.
To identify processes that might account for differences in growth rates of rhodophytes under constant and dynamic light supply, we examined nonequilibrium gas exchange by measuring time courses of photoinduction, loss of photoinduction, and respiration rates immediately after the light–dark transition. Using the rhodophyte species Palmaria palmata (Huds.) Lamour and Lomentaria articulata (Huds.) Lyngb., we compared the effects of growth-saturating constant photon flux density (PFD) (95 μmol photons · m?2· s?1) to those of a dynamic light supply modeled on canopy movements in the intertidal zone (25 μmol photons · m?2· s?1 background PFD plus light flecks of 350 μmol photons · m?2· s?1, 0.1 Hz). The time required for P. palmata and L. articulata to be fully photoinduced was not affected by the dynamics of light supply. L. articulata required only 6 min of illumination with either fluctuating or constant light to be completely induced compared to 20 min for P. palmata. The latter species also lost photoinduction more rapidly than did L. articulata in the dark. There was no significant decline in photoinduction state for either species at the background PFD. The time courses of respiration after illumination with constant and fluctuating light were significantly different for P. palmata but not for L. articulata when the total photon dose was equal. In general, gas exchange of P. palmata appeared to be particularly sensitive to the temporal distribution of light supply whereas that of L. articulata was sensitive to the amplitude of variations, being photoinhibited at high PFD. These results are discussed in terms of the different mechanisms of inorganic carbon acquisition in the two species.  相似文献   
122.
Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m–2s–1) showed a maximum specific growth rate (µmax) of 1.78 d–1. Quantum yield for growth (µ) was 3.8% at the optimum light for growth of 330 µmol photons m–2s–1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).  相似文献   
123.
124.
Growth factor receptors transmit biological signals for the stimulation of cell growth in vitro and in vivo and their autocrine stimulation may be involved in tumorigenesis. It is therefore, of great value to understand receptor reactions in response to ultraviolet (UV) light which certain normal human cells are invaribly exposed to during their growth cycle. UV irradiation has recently been shown to deplete antioxidant enzymes in human skin. The aims of the present study were a) to compare the lateral mobility of epidermal growth factor receptors (EGF-R) in cultured human keratinocytes and human foreskin fibroblasts, b) to investigate effects of ultraviolet B radiation on the mobility of EGF-R in these cells, and c) study the response of EGF-R on addition of antioxidant enzymes. The epidermal growth factor receptors were labeled with rhodaminated EGF, the lateral diffusion was determined and the fraction of mobile EGF-R assessed with the fluorescence recovery after photobleaching (FRAP). We found that human keratinocytes display a higher basal level of EGF-R mobility than human skin fibroblasts, viz. with diffusion coefficients (D ± standard error of the mean, SEM) of 4.2±0.2 × 10–10 cm2/s, and 1.8±0.2 × 10–10 cm2/s, respectively. UVB-irradiated fibroblasts showed an almost four-fold increase in the diffusion coefficient; D was 6.3±0.3 × 10–10 cm2/s. The keratinocytes, however, displayed no significant increase in receptor diffusion after irradiation; D was 5.1±0.8 × 10–10 cm2/s. In both cell types the percentage of EGF-R fluorescence recovery after photobleaching, i.e. the fraction of mobile receptors, was significantly increased after irradiation. In keratinocytes it increased from 69% before irradiation to 78% after irradiation. Analogous figures for fibroblasts were 61% and 73%. The effect of UVB on fibroblast receptors was abolished by prior addition of superoxide dismutase (SOD) and catalase (CAT). It is concluded that UVB radiation of fibroblasts and keratinocytes can affect their biophysical properties of EGF-R. The finding that addition of antioxidant enzymes prevented the UVB effect in fibroblasts may indicate the involvement of reactive oxygen metabolites.Abbreviations CAT Catalase - D Lateral diffusion coefficient - EDTA Ethylenediaminetetraacetic acid - EGF Epidermal growth factor - E-MEM Eagle's minimum essential medium - FCS Fetal calf serum - FRAP Fluorescence recovery after photobleaching - KRG Krebs-Ringer phosphate buffer - PBS Phosphate-buffered saline - R Mobile fraction - ROS Reactive oxygen species - SEM Standard error of the mean - SOD Superoxide dismutase - UVA Ultraviolet light-A (315-400 nm) - UVB Ultraviolet light-B (280-315 nm)  相似文献   
125.
The light-induced induction of components of non-photochemical quenching of chlorophyll fluorescence which are distinguished by different rates of dark relaxation (qNf, rapidly relaxing and qNs, slowly relaxing or not relaxing at all in the presence brief saturating light pulses which interrupt darkness at low frequencies) was studied in leaves of spinach.After dark adaptation of the leaves, a fast relaxing component developed in low light only after a lag phase. Quenching increased towards a maximum with increasing photon flux density. This fast component of quenching was identified as energy-dependent quenching qE. It required formation of an appreciable transthylakoid pH and was insignificant when darkened spinach leaves received 1 s pulses of light every 30 s even though zeaxanthin was formed from violaxanthin under these conditions.Another quenching component termed qNs developed in low light without a lag phase. It was not dependent on a transthylakoid pH gradient, decayed exponentially with a long half time of relaxation and was about 20% of total quenching irrespective of light intensity. When darkened leaves were flashed at frequencies higher than 0.004 Hz with 1 s light pulses, this quenching also appeared. Its extent was very considerable, and it did not require formation of zeaxanthin. Relaxation was accelerated by far-red light, and this acceleration was abolished by NaF.We suggest that qNs is the result of a so-called state transition, in which LHC II moves after its phosphorylation from fluorescent PS II to nonfluorescent PS I. This state transition was capable of decreasing in darkened leaves the potential maximum quantum efficiency of electron flow through Photosystem II by about 20%.Abbreviations PFD photon flux density - PS photosystem  相似文献   
126.
Photoinactivation of Photosystem (PS) II in vivo was investigated by cumulative exposure of pea, rice and spinach leaves to light pulses of variable duration from 2 to 100 s, separated by dark intervals of 30 min. During each light pulse, photosynthetic induction occurred to an extent depending on the time of illumination, but steady-state photosynthesis had not been achieved. During photosynthetic induction, it is clearly demonstrated that reciprocity of irradiance and duration of illumination did not hold: hence the same cumulative photon exposure (mol m–2) does not necessarily give the same extent of photoinactivation of PS II. This contrasts with the situation of steady-state photosynthesis where the photoinactivation of PS II exhibited reciprocity of irradiance and duration of illumination (Park et al. (1995) Planta 196: 401–411). We suggest that, for reciprocity to hold between irradiance and duration of illumination, there must be a balance between photochemical (qP) and non-photochemical (NPQ) quenching at all irradiances. The index of susceptibility to light stress, which represents an intrinsic ability of PS II to balance photochemical and non-photochemical quenching, is defined by the quotient (1-qP)/NPQ. Although constant in steady-state photosynthesis under a wide range of irradiance (Park et al. (1995). Plant Cell Physiol 36: 1163–1169), this index of susceptibility for spinach leaves declined extremely rapidly during photosynthetic induction at a given irradiance, and, at a given cumulative photon exposure, was dependent on irradiance. During photosynthetic induction, only limited photoprotective strategies are developed: while the transthylakoid pH gradient conferred some degree of photoprotection, neither D1 protein turnover nor the xanthophyll cycle was operative. Thus, PS II is more easily photoinactivated during photosynthetic induction, a phenomenon that may have relevance for understorey leaves experiencing infrequent, short sunflecks.Abbreviations D1 protein psbA gene product - DTT dithiothreitol - Fv, Fm, Fo variable, maximum, and initial (corresponding to open traps) chlorophyll fluorescence yield, respectively - NPQ non-photochemical quenching - PS Photosystem - QA primary quinone acceptor of PS II - qP photochemical quenching coefficient  相似文献   
127.
The circumstances that led to the discovery that plants luminesce after they are illuminated are described, as are other discoveries that would not have been possible were it not for the fortuitous association I had with my dear and most admirable friend, W.A. Arnold, to whom this special issue is dedicated.  相似文献   
128.
Nitrate reductase (NR, EC 1.6.6.1) was tested in crude extracts of leaves from Bryophyllum fedtschenkoi plants growing under alternating light/darkness as well as in excised leaves kept in continuous light or darkness. In most extracts NR activity was inhibited 20–80% by 5 m M Mg2+ A light or darkness shift (30 min darkness) during the first part of the photoperiod gave an increase in the Mg2+ inhibition and a decrease in NR activity. Magnesium ion inhibition of NR also showed diurnal variations. Strongest inhibition was found in extracts made during the latter part of the photoperiod and start of the dark period. Pre-incubation of crude extracts with ATP increased Mg2+ inhibition, indicating that phosphorylation of NR is involved in regulation of NR in Crassulacean acid metabolism (CAM) plants. In continuous light an increase in Mg2+ inhibition occurred after 20 h and 40 h, indicating a rhythm in the phosphorylation of NR. A delay in the production of nitrite in the assay (hysteresis) was generally seen in extracts susceptible to Mg2+ inhibition. The rhythms related to NR activity showed the same period length (20 h) as the rhythm in CO2 exchange. However, in contrast to the rhythm in CO2 exchange, NR rhythms were strongly damped in continuous light. In constant darkness the rhythms were even more damped. The results show that post-translational modification of CAM NR is influenced by light/darkness and by an endogenous rhythm.  相似文献   
129.
Basal leaves frequently senesce before anthesis in high population density crops. This paper evaluates the hypothesis that quantitative and qualitative changes in the light environment associated with a high leaf area index (LAI) trigger leaf senescence in sunflower ( Helianthus annuus L.) canopies. Mean leaf duration (LD, time from achievement of maximum leaf area) of leaf 8 was significantly ( P < 0.05) reduced from 51 to 19 days as crop population density was increased from 0.47 to 4.76 plants m−2. High compared to low plant population density was associated with earlier reduction in the photosynthetically active radiation (PAR) and red/far-red ratio (R/FR) reaching the target leaf. However the changes in R/FR preceded those in PAR. When the light environment of individual leaves of isolated plants growing under field conditions was manipulated using filters and FR-reflecting mirrors, LD was positively and linearly related with the mean daily PAR (MDR) received in the FR- (no FR enrichment) treatments. FR enrichment of light reaching the abaxial surface of the leaf significantly ( P < 0.05) reduced LD by 9 days at intermediate PAR levels with respect to FR-controls, but did not affect LD at the maximum PAR used in these experiments. However, when light reaching both leaf surfaces was enriched with FR, LD (for leaves receiving maximum PAR) was 13 days shorter than that of the FR- control. These results show that basal leaf senescence in sunflower is enhanced both by a decrease in PAR and by a decrease in R/FR.  相似文献   
130.
Plasma membrane flavins and pterins are considered to mediate important physiological functions such as blue light photoperception and redox activity. Therefore, the presence of flavins and pterins in the plasma membrane of higher plants was studied together with NAD(P)H-dependent redox activities. Plasma membranes were isolated from the apical hooks of etiolated bean seedlings (Phaseolus vulgaris L. cv. Limburgse Vroege) by aqueous two-phase partitioning. Fluorescence spectroscopy revealed the presence of two chromophores. The first showed excitation maxima at 370 and 460 nm and an emission peak at 520 nm and was identified as a flavin. The second chromophore was probably a pterin molecule with excitation peaks at 290 and 350 nm and emission at 440 nm. Both pigments are considered intrinsic to the plasma membrane since they could not be removed by treatment with hypotonic media containing high salt and low detergent concentrations. The flavin concentration was estimated at about 500 pmol mg?1 protein. However difficulties were encountered in quantifying the pterin concentrations. Protease treatments indicated that the flavins were non-covalently bound to the proteins. Separation of the plasma membrane proteins after solubilisation by octylglucoside, on an ion exchange system (HPLC, Mono Q), resulted in a distinct protein fraction showing flavin and pterin fluorescence and NADH oxidoreductase activity. The flavin of this fraction was identified as flavin mononucleotide (FMN) by HPLC analysis. Other minor peaks of NADH:acceptor reductase activity were resolved on the column. The presence of distinct NAD(P)H oxidases at the plasma membrane was supported by nucleotide specificity and latency studies using intact vesicles. Our work demonstrates the presence of plasma membrane flavins as intrinsic chromophores, that may function in NAD(P)H-oxidoreductase activity and suggests the presence of plasma membrane bound pterins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号