首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3679篇
  免费   497篇
  国内免费   181篇
  2024年   2篇
  2023年   96篇
  2022年   35篇
  2021年   91篇
  2020年   169篇
  2019年   184篇
  2018年   158篇
  2017年   130篇
  2016年   148篇
  2015年   127篇
  2014年   145篇
  2013年   212篇
  2012年   132篇
  2011年   134篇
  2010年   136篇
  2009年   144篇
  2008年   186篇
  2007年   191篇
  2006年   177篇
  2005年   166篇
  2004年   161篇
  2003年   138篇
  2002年   153篇
  2001年   162篇
  2000年   137篇
  1999年   116篇
  1998年   106篇
  1997年   93篇
  1996年   60篇
  1995年   58篇
  1994年   56篇
  1993年   41篇
  1992年   37篇
  1991年   39篇
  1990年   23篇
  1989年   16篇
  1988年   25篇
  1987年   17篇
  1986年   23篇
  1985年   20篇
  1984年   47篇
  1983年   10篇
  1982年   10篇
  1981年   10篇
  1980年   9篇
  1979年   5篇
  1978年   14篇
  1976年   4篇
  1975年   2篇
  1974年   1篇
排序方式: 共有4357条查询结果,搜索用时 31 毫秒
81.
The climate of the native tropical forest habitats of Hylocereus undatus, a hemiepiphytic cactus cultivated in 20 countries for its fruit, can help explain the response of its net CO2 uptake to environmental factors. Under wet conditions, about 85% of the total daily net CO2 uptake occurs at night via Crassulacean acid metabolism, leading to a high water‐use efficiency. Total daily net CO2 uptake is reduced 57% by only 10 days of drought, possibly involving stomatal closure induced by abscisic acid produced in the roots, which typically occupy a small substrate volume. Total daily net CO2 uptake for H. undatus is maximal at day/night air temperatures of 30/20°C, optimal temperatures that are higher than those for desert cacti but representative of ambient temperatures in the tropics; its total daily net CO2 uptake becomes zero at day/night air temperatures of 42/32°C. Stem damage occurs at 45°C for H. undatus, whose photosynthetic cells show little acclimation to high temperatures compared with other cacti and are also sensitive to low temperatures, ‐1.5°C killing half of these cells. Consistent with its shaded habitat, total daily net CO2 uptake is appreciable at a total daily PPF of only 2 mol m2 day' and is maximal at 20 mol m?2 day?1, above which photoinhibition reduces net CO2 uptake. Net CO2 uptake ability, which is highly correlated with stem nitrogen and chlorophyll contents, changes only gradually (halftimes of 2–3 months) as the concentration of applied N is changed. Doubling the atmospheric CO2 concentration raises the total daily net CO2 uptake of H. undatus by 34% under optimal conditions and by even larger percentages under adverse environmental conditions.  相似文献   
82.
This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential (ΨL), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsive to ΨL over a narrow range of water potentials, and that ΨL inducing 50% stomatal closure was correlated with both the ΨL inducing a 20% loss of xylem hydraulic conductivity and leaf water potential at turgor loss in all species. In contrast, there was no correlation between the water potential causing a 50% loss of conductivity in the stem xylem, and the water potential at stomatal closure (ΨSC) amongst species. It was concluded that although both leaf and xylem characters are correlated with the response of stomata to ΨL, there is considerable flexibility in this linkage. The range of responses is discussed in terms of the differing leaf‐loss strategies exhibited by these species.  相似文献   
83.
Horacio Paz 《Biotropica》2003,35(3):318-332
I analyzed patterns of variation in root mass allocation and root morphology among seedlings of woody species in relation to environmental factors in four Neotropical forests. Among forests, I explored the response of root traits to sites varying in water or nutrient availability. Within each forest, I explored the plastic response of species to different microhabitats: gaps and understory. Additionally, I explored evidence for life history correlation of root and shoot traits by comparing species differing in their successional group (light‐demanding [22 spp.] or shade tolerant [27 spp.]) and germination type (species with photosynthetic cotyledons or species with reserve cotyledons). At each forest site, young seedlings from 10 to 20 species were excavated. A total of 55 species was collected in understory conditions and 31 of them were also collected in gaps. From each seedling, six morphological ratios were determined. Allocation to roots was higher in forest sites with the lowest soil resources. Roots were finer and longer in the most infertile site, while roots were deeper in the site with the longest dry season. Seedling traits did not differ between germination types. Shade tolerant species allocated more to roots and developed thicker roots than light‐demanding species. Light‐demanding species showed stronger plastic responses to habitat than shade tolerant species, and species with photo‐synthetic cotyledons showed lower plasticity than species with reserve cotyledons. Overall, these results suggest that among Neotropical species, root allocation and root morphology of seedlings reflect plant adjustments to water or nutrient availability at geographic and microhabitat scales. In addition, life history specialization to light environments is suggested by differences among groups of species in their allocation to roots and in their root morphology.  相似文献   
84.
As tropical forest fragmentation accelerates, scientists are concerned with the loss of species, particularly those that play important ecological roles. Because bats play a vital role as the primary seed dispersers in cleared areas, maintaining healthy bat populations is critical to natural forest regeneration. Observations of foraging bats suggest that many Neotropical fruit‐eating species have fairly general habitat requirements and can forage in many different kinds of disturbed vegetation; however, their roosting requirements may be quite different. To test whether or not general foraging requirements are matched by equally broad roosting requirements, we used radiotelemetry to locate roost sites of two common frugivorous bat species (Sturnira lilium and Artibeus intermedius) in a fragmented forest in southeastern Mexico. Sturnira lilium roosted inside tree cavities and selected large‐diameter roost trees in remnant patches of mature forest. Fewer than 2 percent of trees surveyed had a mean diameter equal to or greater than roost trees used by . S. lilium, Artibeus intermedius roosted externally on branches and vines and under palm leaves and selected roost trees of much smaller diameter. Compared to random trees, roost trees chosen by A. intermedius were closer to neighboring taller trees and also closer in height to these trees. Such trees likely provide cryptic roosts beneath multiple overlapping crowns, with sufficient shelter from predators and the elements. While males of A. intermedius generally roosted alone in small trees within secondary forest, females roosted in small groups in larger trees within mature forest and commuted more than three times farther than males to reach their roost sites. Loss of mature forest could impair the ability of frugivorous bats to locate suitable roost sites. This could have a negative impact on bat populations, which in turn could decrease forest regeneration in impacted areas.  相似文献   
85.
We quantified patterns of vegetation removal and light availability above Atta colombica nests on Barro Colorado Island, Panama. Ants cleared vegetation less than 1 cm in diameter from an area of 77 m2, and up to 3 m above ground level. Overall light availability 1.5 m above ground level was 49 percent greater at ant nest sites than at sites in undisturbed understory. These higher light levels fell within the range known to enhance growth of both shade tolerant and pioneer species.  相似文献   
86.
Abstract Variability in spatial and temporal patterning of flowering by populations of rainforest trees fed upon by honeyeaters and flower-visiting parrots was studied for 2 years in lowland tropical hill forest in Papua New Guinea. All 2200 trees in a 3 ha plot were tagged, identified, mapped and monitored monthly. Of 274 tree species present, 86 flowered during the course of the study; during any given month, approximately 20% of the species flowering that month were visited by nectarivorous birds. Results showed that overall flower resources (total number of species, and number of bird-pollinated species, individuals and flowers) fluctuated during the year, decreased during the dry season and increased during the wet season. In addition, there was a wide range of temporal variation within and among tree species in length and timing of flowering period, percentage of each conspecific population flowering from year to year, and degree of synchrony among flowering conspecifics. Spatial dispersion of tree populations also varied, from clumps to scattered single individuals. Resident bird species were correlated with synchronously flowering trees, whereas nomadic bird species were correlated with asynchronously flowering trees. Resident birds were also associated with smaller blooming displays per tree, whereas nomadic birds were associated with trees that bloomed massively. There was no correlation between avian nomadism and spatial dispersion of tree populations. Thus nomadic birds seem to range in search of rich but unpredictable resources; resident birds may rely more on predictable, but smaller resources.  相似文献   
87.
Theoretically, there are three principal ways in which ecosystem processes might respond to reductions in species richness. These theories are reviewed, and then considered in the context of a study of the diversity of soil nematodes and termites in near-primary forest sites at Mbalmayo, Cameroon, and the contribution made by these two taxa to carbon fluxes (CO2 and CH4) from the forest floor. Nematode abundances average 2.04 × 106 m-2, and termites between 2933 and 6957 m-2. The site is the most species-rich yet investigated for both groups anywhere in the world, so that a very large number of species contribute to carbon fluxes. We speculate about how much redundancy might be built into the functioning of both assemblages, and point out the enormous difficulties of resolving such questions, and of producing such detailed species-inventories.  相似文献   
88.
Partitioning of water resources among plants of a lowland tropical forest   总被引:3,自引:0,他引:3  
Source water used by plants of several species in a semi-evergreen lowland tropical forest on Barro Colorado Island, Panama, was assessed by comparing the relative abundance of deuterium, D, versus hydrogen, H (stable hydrogen isotope composition, D) in xylem sap and in soil water at different depths, during the dry season of 1992. Ecological correlates of source water were examined by comparing xylem water D values with leaf phenology, leaf water status determined with a pressure chamber, and rates of water use determined as mass flow of sap using the stem heat balance method. Soil water D values decreased sharply to 30 cm, then remained relatively constant with increasing depth. Average D values were-13, for 0–30 cm depth and-36.7 for 30–100 cm depth. Soil water D values were negatively associated with soil water content and soil water potential. Concurrent analyses of xylem water revealed a high degree of partitioning of water resources among species of this tropical forest. Xylem water D of deciduous trees (average=-25.3±1.4) was higher than that of evergreen trees (average=-36.3±3.5), indicating that evergreen species had access to the more abundant soil water at greater depth than deciduous species. In evergreen shade-tolerant and high-light requiring shrubs and small trees, D of xylem water was negatively correlated with transpiration rate and leaf water potential indicating that species using deeper, more abundant water resources had both higher rates of water use and more favorable leaf water status.  相似文献   
89.
In the humid tropics, legumes are harvested and surface applied as mulch or incorporated as green manure. Studies on N dynamics and budgets from these systems report unaccounted losses of N. Ammonia volatilization may account for a significant percentage of these unexplained N deficits. The main objectives of this study were to: 1) determine the rate and amount of ammonia volatilization from organic amendments, both incorporated (green manure) and unincorporated (mulch), 2) compare ammonia volatilization of organic amendments on both acid (unlimed) and limed soils, and 3) correlate quality, i.e. polyphenolic and lignin concentration and carbon-to-nitrogen ratio, of the organic amendments with ammonia volatilization and net N mineralization. In an incubation experiment, ammonia volatilization losses and net N mineralization were measured from fresh leaflets of 10 legumes over a three-week period. Ammonia volatilization losses for the 10 species ranged from 3.4 to 11.8% of the total N applied in the organic amendment. Lignin content was negatively correlated to ammonia volatilization. Ammonia volatilized from mulches but not green manures, on both unlimed and limed soils, suggesting that ammonia volatilization is a surface phenomenon and not affected by soil pH. Net N mineralization was affected by species and soil pH, but was unaffected by placement (green manure or mulch). For the farmer in low-input agriculture where N tends to be limiting, volatilization losses of N from legume mulch systems could be on the same order of magnitude as crop removal.  相似文献   
90.
Chronic photoinhibition in seedlings of tropical trees   总被引:1,自引:0,他引:1  
Seedlings of five canopy species of tropical trees from Costa Rica and Puerto Rico were grown in full shade (midday range of photosynthetic photon flux density [PPFD], 100–140 μmol m?2 s?1), partial shade (midday PPFD, 400–600 μmol m?2 s?1) and full sun (midday PPFD, 1 500–1 800 μmol m?2 s?1) for 3 months. The species were Ochroma lagopus (Bombacaceae), a pioneer species; Inga edulis (Fabaceae), found in secondary forest; and Dipteryx panamensis (Fabaceae), Hampea appendiculata (Malvaceae), and Manilkara bidentata (Sapotaceae), three species characteristic of primary forest. After the plants were placed in the dark overnight, chlorophyll fluorescence characteristics were measured for recently expanded and mature leaves. The ratio of variable fluorescence to maximum fluorescence (Fv/Fm) was used to estimate the degree of chronic photoinhibition. Only individuals of one species, Dipteryx panamensis, showed significant depression of Fv/Fm after long-term exposure to full sun. The depression was highly correlated with quantum yield of O2 evolution which also declined after exposure to full sun. The decline may have been related to foliar N concentration. Although all plants were supplied with ample nutrients, foliar N did not increase significantly for Dipteryx seedlings in full sun, whereas it did for Ochroma and Inga. Leaf age affected Fv/Fm only in the cases of Manilkara, where it was slightly lower in recently expanded leaves, and of Dipteryx where it interacted with the effects of light regime. We conclude that chronic photoinhibition is not common in seedlings of canopy trees of tropical rain forests except when availability of mineral nutrients may be limiting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号