首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4693篇
  免费   610篇
  国内免费   207篇
  2024年   6篇
  2023年   110篇
  2022年   71篇
  2021年   133篇
  2020年   227篇
  2019年   254篇
  2018年   197篇
  2017年   182篇
  2016年   203篇
  2015年   182篇
  2014年   192篇
  2013年   274篇
  2012年   185篇
  2011年   179篇
  2010年   184篇
  2009年   206篇
  2008年   225篇
  2007年   259篇
  2006年   223篇
  2005年   194篇
  2004年   191篇
  2003年   162篇
  2002年   186篇
  2001年   197篇
  2000年   142篇
  1999年   119篇
  1998年   122篇
  1997年   102篇
  1996年   63篇
  1995年   56篇
  1994年   74篇
  1993年   52篇
  1992年   43篇
  1991年   41篇
  1990年   28篇
  1989年   19篇
  1988年   36篇
  1987年   16篇
  1986年   19篇
  1985年   21篇
  1984年   49篇
  1983年   11篇
  1982年   11篇
  1981年   9篇
  1980年   11篇
  1979年   8篇
  1978年   17篇
  1976年   5篇
  1975年   6篇
  1973年   2篇
排序方式: 共有5510条查询结果,搜索用时 15 毫秒
71.
Abstract Sucking insects constituted 79% of all phytophagous insects collected from woody sprouts in the ground layer of a tropical eucalypt forest. Mobile insect groups such as non-psyllid Hemiptera and Orthoptera were relatively frequent in this environment compared to temperate, Eucalyptus-dominated vegetation. The high fire frequency of the tropical eucalypt forest may favour mobile insect groups. The capture of sucking insects and caterpillars peaked in dry season samples. Other patterns of abundance of phytophagous insect groups showed little consistency in their seasonal trends between host species or between vegetation types within host species. Disparities between chewing insect abundance in daytime samples and the damage chewing insects cause, may result from disproportionate consumption by large, mainly nocturnal insects, such as members of the Orthoptera. In this study, 21% of insect species were specialists on single plant species. This study suggested that insect abundance reflected the growth patterns of woody sprouts after regular burning, rather than that plant growth and development were tuned to the pressures of insect herbivory.  相似文献   
72.
Abstract Many molluscs in tidal wetlands climb trees as the tide rises, a behaviour usually assumed to be a means of avoiding subtidal predators. Some species are more active during neap tides, when the access of subtidal predators to the forest is limited, but rest on trees during spring tides. Cerithidea anticipata, which inhabits the mangrove forests around Darwin Harbour (Northern Territory, Australia), displayed almost exactly the opposite pattern. This species climbed higher, and was less active, during neap tides that did not flood the forest than during spring tides. In experiments with tethered snails, individuals prevented from climbing died during neap tides, apparently from physiological stress. Further, individuals resting on trees around clearings, usually selected shaded sites. These results suggest that the major reason C. anticipata climbed was to avoid physiological stress during neap tides, not subtidal predators during spring tides. There was some evidence of predation under the canopy, but the rate was relatively low and the species responsible appeared to be resident in the forest.  相似文献   
73.
Seasonal changes in the phytoplankton community of a small tropical reservoir were monitored over a four year period comprising of an initial two seasonal cycles during which the water column stratified strongly for extended periods each year, and two further seasonal cycles after installation of a mechanical aeration system to induce artificial destratification. In the unmanaged reservoir, the concentration of chlorophyll a at 0.5 m reached maximum values (on one occasion > 90 mg m−3) when the water column was stratified and the epilimnion was very shallow (ca 2 m depth). The hypolimnion at this time was anoxic (less than 2% oxygen saturation) and had a high concentration of bacteriochlorophyll (100–200 mg m−3). The phytoplankton community of the unmanaged reservoir was generally dominated by cyanobacteria (Cylindrospermopsis raciborskii, Anabaena tenericaulis) during the warmer months of the year (November–March) (but replaced by chlorophyta, dinophyceae and euglenophyceae after periods of intense rain) and by bacillariophyceae (Synedra ulna var. chaseana, S. tenera) during the cooler, dry months. In the artificially destratified reservoir (8 h aeration day−1), the phytoplankton community was largely dominated by diatoms except after depletion of the silica content of the water column which caused diatoms to be replaced by cyanobacteria (dominated by A. tenericaulis) and a range of chlorophytes. The changing pattern of stratification and circulation of the water column in the unmanaged reservoir caused repeated disruption of the established phytoplankton assemblage with peaks of high biomass associated with transient cyanobacterial blooms. Continuous aeration and the consequent increase in the ratio mixed: euphotic depth provided conditions suitable for dominance of the phytoplankton by diatoms, as long as silica was available, and resulted in average chlorophyll levels higher than in the unmanaged reservoir (120 ± 10 v. 64 ± 9 mg m−2). Hierarchical fusion analysis based on the biomass of species differentiated the phytoplankton samples into cluster groups that could be related primarily to stratification or mixing of the water column.  相似文献   
74.
A mesocosm experiment was conducted to assess the impact of moderate silver carp (Hypophthalmichthys molitrix) biomass (41 g m–3 or 850 kg ha–1) on the plankton community and water quality of eutrophic Paranoá Reservoir (Brasília, Brazil). Microzooplankton (copepod nauplii and rotifers <200 m), netphytoplankton (> 20 m), total phytoplankton biomass (expressed as chlorophyll-a) and net primary productivity were significantly reduced by silver carp. Apart from increased nitrogen in the sediment, nutrients and chemical properties of the water were not affected by fish presence. The observed improvements in water quality suggest that stocking silver carp in Paranoá Reservoir to control blue-green algae is a promising biomanipulation practice.  相似文献   
75.
Vegetation cover creates competing effects on land surface temperature: it typically cools through enhancing energy dissipation and warms via decreasing surface albedo. Global vegetation has been previously found to overall net cool land surfaces with cooling contributions from temperate and tropical vegetation and warming contributions from boreal vegetation. Recent studies suggest that dryland vegetation across the tropics strongly contributes to this global net cooling feedback. However, observation-based vegetation-temperature interaction studies have been limited in the tropics, especially in their widespread drylands. Theoretical considerations also call into question the ability of dryland vegetation to strongly cool the surface under low water availability. Here, we use satellite observations to investigate how tropical vegetation cover influences the surface energy balance. We find that while increased vegetation cover would impart net cooling feedbacks across the tropics, net vegetal cooling effects are subdued in drylands. Using observations, we determine that dryland plants have less ability to cool the surface due to their cooling pathways being reduced by aridity, overall less efficient dissipation of turbulent energy, and their tendency to strongly increase solar radiation absorption. As a result, while proportional greening across the tropics would create an overall biophysical cooling feedback, dryland tropical vegetation reduces the overall tropical surface cooling magnitude by at least 14%, instead of enhancing cooling as suggested by previous global studies.  相似文献   
76.
Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.  相似文献   
77.
Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha−1 year−1; 95% confidence interval [CI] 2.36–5.25) of total AGB loss (8.72 Mg ha−1 year−1; CI 5.57–12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%–17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%–57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%–80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.  相似文献   
78.
Tropical and subtropical dry woodlands are rich in biodiversity and carbon. Yet, many of these woodlands are under high deforestation pressure and remain weakly protected. Here, we assessed how deforestation dynamics relate to areas of woodland protection and to conservation priorities across the world's tropical dry woodlands. Specifically, we characterized different types of deforestation frontier from 2000 to 2020 and compared them to protected areas (PAs), Indigenous Peoples' lands and conservation areas for biodiversity, carbon and water. We found that global conservation priorities were always overrepresented in tropical dry woodlands compared to the rest of the globe (between 4% and 96% more than expected, depending on the type of conservation priority). Moreover, about 41% of all dry woodlands were characterized as deforestation frontiers, and these frontiers have been falling disproportionately in areas with important regional (i.e. tropical dry woodland) conservation assets. While deforestation frontiers were identified within all tropical dry woodland classes of woodland protection, they were lower than the average within protected areas coinciding with Indigenous Peoples' lands (23%), and within other PAs (28%). However, within PAs, deforestation frontiers have also been disproportionately affecting regional conservation assets. Many emerging deforestation frontiers were identified outside but close to PAs, highlighting a growing threat that the conserved areas of dry woodland will become isolated. Understanding how deforestation frontiers coincide with major types of current woodland protection can help target context-specific conservation policies and interventions to tropical dry woodland conservation assets (e.g. PAs in which deforestation is rampant require stronger enforcement, inactive deforestation frontiers could benefit from restoration). Our analyses also identify recurring patterns that can be used to test the transferability of governance approaches and promote learning across social–ecological contexts.  相似文献   
79.
Many prey species change their antipredator defence during ontogeny, which may be connected to different potential predators over the life cycle of the prey. To test this hypothesis, we compared reactions of two predator taxa – spiders and birds – to larvae and adults of two invasive true bug species, Oxycarenus hyalinipennis and Oxycarenus lavaterae (Heteroptera: Oxycarenidae) with life-stage-specific chemical defence mechanisms. The reactions to larvae and adults of both true bug species strikingly differed between the two predator taxa. The spiders were deterred by the defences of adult bugs, but the larval defences were ineffective against them. By contrast, birds attacked the larvae considerably less often than the adult bugs. The results indicate a predator-specific ontogenetic change in defence effectiveness of both Oxycarenus species. The change in defence is likely linked to the life-stage-specific composition of secretions in both species: whereas secretions of larvae are dominated by unsaturated aldehydes, secretions of adults are rich in terpenoids, which probably serve dual function of defensive chemicals and pheromones. Our results highlight the variation in defence between different life stages and the importance of testing responses of different types of predators.  相似文献   
80.
Observatories are designed to collect data for a range of uses. The Australian Acoustic Observatory (A2O) was established to collect environmental sound, including audible species calls, from 344 recorders at 86 sites around Australia. We examine the potential of the A2O to monitor near threatened, threatened, endangered and critically endangered species, based on their vocal behaviour, geographic distributions in relation to the sites of the A2O and on some knowledge of habitat use. Using IUCN and EPBC lists of threatened and endangered species, we extracted species that vocalized in the audible range, and using conservative estimates of their geographic ranges, determined whether there was a possibility of hearing them at these sites. We found that it may be possible to detect up to 171 threatened species at sites established for the A2O, and that individual sites have the potential to detect up to 40 threatened species. All 86 sites occurred in locations where threatened species could possibly be detected, and the list of detectable species included birds, amphibians, and mammals. We have incidentally detected one mammal and four bird species in the data during other work. Threatening processes to which potentially detectable species were exposed included all but two IUCN threat categories. We concluded that with applications of technology to search the audio data from the A2O, it could serve as an important tool for monitoring threatened species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号