首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3050篇
  免费   403篇
  国内免费   143篇
  3596篇
  2024年   2篇
  2023年   77篇
  2022年   31篇
  2021年   81篇
  2020年   149篇
  2019年   154篇
  2018年   131篇
  2017年   105篇
  2016年   124篇
  2015年   104篇
  2014年   119篇
  2013年   169篇
  2012年   104篇
  2011年   108篇
  2010年   110篇
  2009年   117篇
  2008年   135篇
  2007年   164篇
  2006年   143篇
  2005年   128篇
  2004年   131篇
  2003年   117篇
  2002年   126篇
  2001年   140篇
  2000年   108篇
  1999年   94篇
  1998年   81篇
  1997年   75篇
  1996年   45篇
  1995年   47篇
  1994年   50篇
  1993年   36篇
  1992年   32篇
  1991年   38篇
  1990年   26篇
  1989年   14篇
  1988年   20篇
  1987年   14篇
  1986年   18篇
  1985年   18篇
  1984年   47篇
  1983年   10篇
  1982年   10篇
  1981年   8篇
  1980年   9篇
  1979年   5篇
  1978年   14篇
  1976年   3篇
  1975年   2篇
  1971年   1篇
排序方式: 共有3596条查询结果,搜索用时 15 毫秒
61.
The Cerrado (Brazilian savanna) is a biodiversity hotspot with a history of fire that goes back as far as 10 million years. Fire has influenced the evolution of several aspects of the vegetation, including reproduction and life cycles. This study tested how fire by‐products such as heat and smoke affect the germination of six species common to two Cerrado open physiognomies: wet grasslands and the campo sujo (grassland with scattered shrubs and dwarf trees). We subjected seeds collected in northern Brazil to heat shock and smoke treatments, both separately and combined, using different temperatures, exposure times, and smoke concentrations in aqueous solutions. High temperatures and smoke did not break seed dormancy nor stimulate germination of the Cerrado study species. However, seeds were not killed by high temperatures, indicating that they are fire‐tolerant. Our findings differed from those of other fire‐prone ecosystems (mostly of Mediterranean vegetation), where fire stimulates germination. Moreover, we provide important information regarding germination strategies of non‐woody Cerrado plants, showing the importance of considering the tolerance of seeds to high temperatures when evaluating fire‐related traits in fire‐prone ecosystems.  相似文献   
62.
63.
The response of small understory trees to long-term drought is vital in determining the future composition, carbon stocks and dynamics of tropical forests. Long-term drought is, however, also likely to expose understory trees to increased light availability driven by drought-induced mortality. Relatively little is known about the potential for understory trees to adjust their physiology to both decreasing water and increasing light availability. We analysed data on maximum photosynthetic capacity (Jmax, Vcmax), leaf respiration (Rleaf), leaf mass per area (LMA), leaf thickness and leaf nitrogen and phosphorus concentrations from 66 small trees across 12 common genera at the world's longest running tropical rainfall exclusion experiment and compared responses to those from 61 surviving canopy trees. Small trees increased Jmax, Vcmax, Rleaf and LMA (71, 29, 32, 15% respectively) in response to the drought treatment, but leaf thickness and leaf nutrient concentrations did not change. Small trees were significantly more responsive than large canopy trees to the drought treatment, suggesting greater phenotypic plasticity and resilience to prolonged drought, although differences among taxa were observed. Our results highlight that small tropical trees have greater capacity to respond to ecosystem level changes and have the potential to regenerate resilient forests following future droughts.  相似文献   
64.
By harvesting scattered large trees, selective logging increases light availability and thereby stimulates growth and crown expansion at early‐life stage among remnant trees. We assessed the effects of logging on total and merchantable bole (i.e., lowest branch at crown base) heights on 952 tropical canopy trees in French Guiana. We observed reductions in both total (mean, ?2.3 m) and bole (mean, ?2.0 m) heights more than a decade after selective logging. Depending on local logging intensity, height reductions resulted in 2–13 percent decreases in aboveground tree biomass and 3–17 percent decreases in bole volume. These results highlight the adverse effects of logging at both tree and stand levels. This decrease in height is a further threat to future provision of key environmental services, such as timber production and carbon sequestration.  相似文献   
65.
Estimates of forest leaf litter frog density, mass, richness and diversity given by the widely used 8 m × 8 m large plot method (LPM) were compared with estimates obtained by a newly proposed method (small 2 m × 1 m plots with leaf removal; SPLR). The study site was an undisturbed area of the Atlantic Rainforest of Ilha Grande, an island located in the south of Rio de Janeiro State, Brazil. Twenty‐four LPM (totalling 1536 m2 of forest floor) and 90 SPLR (totalling 180 m2 of forest floor) were performed. The estimates obtained by the two methods differed markedly, indicating that even using a much smaller sampling area (11.7% of that of LPM), SPLR gave frog density estimates six times higher, and frog mass estimates approximately 2.5 times higher than estimates provided by LPM. The species richness and diversity obtained by the two methods were similar, despite the fact that the total area sampled with SPLR was much smaller. These data suggest that LPM may underestimate the abundance and biomass of leaf litter frogs in a given area.  相似文献   
66.
Response of soil respiration (CO2 emission) to simulated nitrogen (N) deposition in a mature tropical forest in southern China was studied from October 2005 to September 2006. The objective was to test the hypothesis that N addition would reduce soil respiration in N saturated tropical forests. Static chamber and gas chromatography techniques were used to quantify the soil respiration, following four‐levels of N treatments (Control, no N addition; Low‐N, 5 g N m?2 yr?1; Medium‐N, 10 g N m?2 yr?1; and High‐N, 15 g N m?2 yr?1 experimental inputs), which had been applied for 26 months before and continued throughout the respiration measurement period. Results showed that soil respiration exhibited a strong seasonal pattern, with the highest rates found in the warm and wet growing season (April–September) and the lowest rates in the dry dormant season (December–February). Soil respiration rates showed a significant positive exponential relationship with soil temperature, whereas soil moisture only affect soil respiration at dry conditions in the dormant season. Annual accumulative soil respiration was 601±30 g CO2‐C m?2 yr?1 in the Controls. Annual mean soil respiration rate in the Control, Low‐N and Medium‐N treatments (69±3, 72±3 and 63±1 mg CO2‐C m?2 h?1, respectively) did not differ significantly, whereas it was 14% lower in the High‐N treatment (58±3 mg CO2‐C m?2 h?1) compared with the Control treatment, also the temperature sensitivity of respiration, Q10 was reduced from 2.6 in the Control with 2.2 in the High‐N treatment. The decrease in soil respiration occurred in the warm and wet growing season and were correlated with a decrease in soil microbial activities and in fine root biomass in the N‐treated plots. Our results suggest that response of soil respiration to atmospheric N deposition in tropical forests is a decline, but it may vary depending on the rate of N deposition.  相似文献   
67.
Rain Forest Structure at Forest-Pasture Edges in Northeastern Costa Rica   总被引:1,自引:1,他引:1  
Land-use change in the Sarapiquí region of Costa Rica has resulted in a fragmented forest landscape with abrupt edges between forest and pasture. Forest responses to edge effects vary widely and can significantly affect ecosystem integrity. Our objective was to examine forest structure at 20+ yr old forest-pasture edges in Sarapiquí. Three transects with 0.095-ha plots at seven distances from forest edges were established in each of six forest patches. Stem density, basal area, and aboveground biomass in trees and palms ≥ 10-cm diameter at breast height were measured in all plots. In addition, hemispherical photographs were taken to determine leaf area index, understory light availability, and percent canopy openness. Linear mixed-effects models showed significantly higher tree stem density at forest edges, relative to interiors, a pattern reflected by increased stem density, basal area, and aboveground biomass in small diameter trees (≤ 20 cm) growing near edges. No differences in total tree basal area, aboveground biomass, or hemispherical photograph-derived parameters were detected across the forest edge to interior gradient. The recruitment of small diameter trees following edge creation has contributed to the development of dense vegetation at the forest edge and has aided in the maintenance of similar tree basal area and aboveground biomass between edge and interior environments. These data reflect on the robustness of forest edges in Sarapiquí, a characteristic that will likely minimize future detrimental edge effects and promote a number of high-value environmental services in these forests.  相似文献   
68.
Increasingly, local ecological knowledge (LEK) held by groups of people engaging directly with their ecosystems for food production is recognized as a valuable tool for understanding environmental change, as well as for ecosystem management and conservation. However, the acceptance of LEK for resource management has been partly hindered by difficulties in translating local knowledge into a form that can be applied directly to Western scientific endeavors. Anthropology's focus on cultural meaning makes its practitioners uniquely qualified to find common ground between different systems of knowledge. Here, I report the use of ethnographic methods to represent Puerto Rican small-scale fishers' knowledge about tropical coastal habitat connectivity and the composition of species assemblages by underwater habitats. These two topics are of current interest for tropical fishery science and their study can benefit from fishers' extensive experience with the coastal environments on which they depend.  相似文献   
69.
Prospects for tropical forest biodiversity in a human-modified world   总被引:3,自引:0,他引:3  
The future of tropical forest biodiversity depends more than ever on the effective management of human-modified landscapes, presenting a daunting challenge to conservation practitioners and land use managers. We provide a critical synthesis of the scientific insights that guide our understanding of patterns and processes underpinning forest biodiversity in the human-modified tropics, and present a conceptual framework that integrates a broad range of social and ecological factors that define and contextualize the possible future of tropical forest species. A growing body of research demonstrates that spatial and temporal patterns of biodiversity are the dynamic product of interacting historical and contemporary human and ecological processes. These processes vary radically in their relative importance within and among regions, and have effects that may take years to become fully manifest. Interpreting biodiversity research findings is frequently made difficult by constrained study designs, low congruence in species responses to disturbance, shifting baselines and an over-dependence on comparative inferences from a small number of well studied localities. Spatial and temporal heterogeneity in the potential prospects for biodiversity conservation can be explained by regional differences in biotic vulnerability and anthropogenic legacies, an ever-tighter coupling of human-ecological systems and the influence of global environmental change. These differences provide both challenges and opportunities for biodiversity conservation. Building upon our synthesis we outline a simple adaptive-landscape planning framework that can help guide a new research agenda to enhance biodiversity conservation prospects in the human-modified tropics.  相似文献   
70.
Abstract The vertical stratification of insect species assemblages inhabiting tropical rainforests is well established but few have examined whether these patterns are reflected in vertical stratification of body size or feeding guilds. We used Malaise and Flight Interception Traps to sample beetle assemblages from five locations, at both canopy and ground zones of a tropical lowland rainforest site near Cape Tribulation, Australia. Beetles from 4 years of sampling were sorted to Family and morphospecies, and allocated to one of five feeding guilds. Within feeding guilds the number of species and individuals, from canopy‐ and ground‐caught traps were compared. The body lengths of species were measure and compared within feeding guilds and families. Herbivores was the dominant guild but was not the majority of all species or individuals. Most beetle species (69%) were less than 5 mm in length and the mean size of canopy‐caught species was greater than that for ground‐caught species. This was probably due to slightly more species of plant feeders (herbivores and xylophages) present in the canopy, which were significantly larger than saprophages, fungivores and predators. Among feeding guilds, there were few overall canopy–ground differences. These results contrast with species composition results presented elsewhere where strong differences between the canopy and the ground were evident. We suggest that our guild groupings may have been too coarse to detect fine‐scale differences and that resource partitioning may have also masked faunal stratification. We propose that fine‐scale differences in resources between the canopy and the ground, together with strong microclimate gradients, are likely to be important in structuring the vertical stratification of insect assemblages at the level of species, but not with respect to functional groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号