首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1476篇
  免费   243篇
  国内免费   115篇
  2024年   7篇
  2023年   47篇
  2022年   34篇
  2021年   66篇
  2020年   89篇
  2019年   113篇
  2018年   62篇
  2017年   78篇
  2016年   88篇
  2015年   101篇
  2014年   81篇
  2013年   98篇
  2012年   67篇
  2011年   54篇
  2010年   55篇
  2009年   65篇
  2008年   59篇
  2007年   52篇
  2006年   66篇
  2005年   61篇
  2004年   46篇
  2003年   51篇
  2002年   45篇
  2001年   43篇
  2000年   42篇
  1999年   26篇
  1998年   27篇
  1997年   20篇
  1996年   28篇
  1995年   14篇
  1994年   21篇
  1993年   20篇
  1992年   17篇
  1991年   17篇
  1990年   22篇
  1989年   8篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   10篇
  1984年   4篇
  1982年   3篇
  1981年   3篇
  1980年   7篇
  1976年   1篇
  1970年   1篇
排序方式: 共有1834条查询结果,搜索用时 15 毫秒
191.
Food chain models have dominated empirical studies of trophic interactions in the past decades, and have lead to important insights into the factors that control ecological communities. Despite the importance of food chain models in instigating ecological investigations, many empirical studies still show a strong deviation from the dynamics that food chain models predict. We present a theoretical framework that explains some of the discrepancies by showing that trophic interactions are likely to be strongly influenced by the spatial configuration of consumers and their resources. Differences in the spatial scale at which consumers and their resources function lead to uncoupling of the population dynamics of the interacting species, and may explain overexploitation and depletion of resource populations. We discuss how changed land use, likely the most prominent future stress on natural systems, may affect food web dynamics by interfering with the scale of interaction between consumers and their resource.  相似文献   
192.
Scaling up keystone effects from simple to complex ecological networks   总被引:2,自引:0,他引:2  
Predicting the consequences of species loss requires extending our traditional understanding of simpler dynamic systems of few interacting species to the more complex ecological networks found in natural ecosystems. Especially important is the scaling up of our limited understanding of how and under what conditions loss of ‘keystone’ species causes large declines of many other species. Here we explore how these keystone effects vary among simulations progressively scaled up from simple to more complex systems. Simpler simulations of four to seven interacting species suggest that species up to four links away can strongly alter keystone effects and make the consequences of keystone loss potentially indeterminate in more realistically complex communities. Instead of indeterminacy, we find that more complex networks of up to 32 species generally buffer distant influences such that variation in keystone effects is well predicted by surprisingly local ‘top‐down’, ‘bottom‐up’, and ‘horizontal‘ constraints acting within two links of the keystone subsystem. These results demonstrate that: (1) strong suppression of the competitive dominant by the keystone may only weakly affect subordinate competitors; (2) the community context of the target species determines whether strong keystone effects are realized; (3) simple, measurable, and local attributes of complex communities may explain much of the empirically observed variation in keystone effects; and (4) increasing network complexity per se does not inherently make the prediction of strong keystone effects more complicated.  相似文献   
193.
A recent meta‐analysis indicates that trophic cascades (indirect effects of predators on plants via herbivores) are weak in marine plankton in striking contrast to freshwater plankton ( Shurin et al. 2002 , Ecol. Lett., 5, 785–791). Here we show that in a marine plankton community consisting of jellyfish, calanoid copepods and algae, jellyfish predation consistently reduced copepods but produced two distinct, opposite responses of algal biomass. Calanoid copepods act as a switch between alternative trophic cascades along food chains of different length and with counteracting effects on algal biomass. Copepods reduced large algae but simultaneously promoted small algae by feeding on ciliates. The net effect of jellyfish on total algal biomass was positive when large algae were initially abundant in the phytoplankton, negative when small algae were dominant, but zero when experiments were analysed in combination. In contrast to marine systems, major pathways of energy flow in Daphnia‐dominated freshwater systems are of similar chain length. Thus, differences in the length of alternative, parallel food chains may explain the apparent discrepancy in trophic cascade strength between freshwater and marine planktonic systems.  相似文献   
194.
Abstract.  1. The simultaneous occupation of a rare understorey ant-acacia Acacia mayana by its guarding ant Pseudomyrmex ferrugineus , and an apparent opportunist parasite of the mutualism, the generalist ant Camponotus planatus is described. The two ant species occur together in 30.7% of the 26 mature A. mayana plants [23.5% of all trees ( n  = 34)] surveyed, but C. planatus is absent from saplings below 1 m in height ( n  = 8).
2. While P. ferrugineus shows behaviour compatible with effective host-tree defence, C. planatus does not attack phytophagous insects and appears ineffective as an ant-guard. Camponotus planatus does, however, occupy swollen thorns (pseudogalls) on the host tree, and harvests nectar from extrafloral leaf nectaries. It is proposed that C. planatus is a parasite of the Acacia–Pseudomyrmex mutualism.
3. Camponotus planatus does not harvest the second trophic reward produced by the tree for its Pseudomyrmex ant-guards, protein-rich food (Beltian) bodies. Camponotus planatus lack the specialised larval adaptations needed to use Beltian bodies as brood food, suggesting that this resource is potentially more resistant to exploitation by generalists than extrafloral nectar.
4. In competition for access to nectaries, C. planatus effectively displaced P. ferrugineus in 99.8% of encounters. These results suggest not only that C. planatus is a parasite of this mutualism, but also that it is able to effectively counteract the aggression shown to other insects by the resident ant-guards.  相似文献   
195.
During the 10000-year history of the Ostrowite Lake, there have been several episodes of change in dominance amongst species of the genus Bosmina. The dominants were alternately B.longirostris and Eubosmina spp. Amongst the subgenus Eubosmina, two species prevailed in different periods:Bosmina coregoni and Bosmina reflexa. The first species, Bosmina coregoni, is characterized by long antennae and short carapace mucrones, while the second one, Bosmina reflexa, by short antennae and very long mucrones. Bosmina reflexa was dominant at the beginning of the lake's history (Preboreal, 10000--9000 BP) and during the early Subboreal Period (5000–3500 BP). Only a small number of remains of Bosmina longispina(Eubosmina spp.) were present along the entire profile. Such strong changes in the domination of Bosmina species were observed for the first time in the sediments of Polish lakes. A similar transition from one species to another has been described in a few German lakes and was linked to climate changes. However, the changes in the Ostrowite Lake do not correlate with climate changes, but most probably, with changes in the lake's trophic level. This is suggested by the simultaneous increase of Bosmina reflexa and a good indicator of eutrophy, Bosmina longirostris.  相似文献   
196.
Aphid suppression by natural enemies in mulched cereals   总被引:2,自引:0,他引:2  
Large populations of natural enemies are the basis for natural pest control. Effects of mulch on predator–prey interactions in arable fields are poorly known, despite its potential to enhance ground‐dwelling predators and thereby reduce pest infestations. We studied the densities of predators and parasitoids, and their impact on cereal aphids in the presence and absence of mulch. Released populations of the bird cherry aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae), and two naturally occurring aphid species, were monitored under experimentally reduced densities of: (i) ground‐dwelling predators, (ii) flying predators and parasitoids, and (iii) with straw mulch. The three treatments were applied in a 2 × 2 × 2 factorial design in a field of spring wheat (Triticum aestivum L.). The exclusion of ground‐dwelling predators increased aphid populations by 55% in June and 40% in July, respectively. Mulched plots had 25% lower aphid densities in June. This was presumably due to enhanced densities of spiders (Araneida) in mulched plots. The exclusion of flying predators and parasitoids led to 94% higher aphid populations in late July (109 vs. 56 individuals per 100 shoots), irrespective of mulch or ground predator manipulation. This was attributed to the larvae of gall midges Aphidoletes cf. aphidimyza (Rondani) (Diptera: Cecidomyiidae) and hoverflies (Diptera: Syrphidae). The results indicate that a scarcity of predators and a bare soil surface renders crops more susceptible to arthropod pests. Farming schemes should aim at enhancing both ground‐dwelling and flying predators for elevated levels of natural pest control.  相似文献   
197.
198.
In Lake Lucerne, Switzerland, the predaceous cladocerans Leptodora kindti and Bythotrephes longimanus segregate along spatial and temporal dimensions. In spring (April–May/June), Bythotrephes longimanus occurs below 0–20 m, while Leptodora is absent. In summer and early autumn (July–September/October), when Leptodora dominates during daytime in the 0–20 m depth, Bythotrephes longimanus also lives in deeper zones. Food competition and fish predation pressure may be the cause of differences in ecology of Leptodora and Bythotrephes acquired during evolution. Due to its transparency and tolerance of higher temperature, Leptodora could avoid fish predation and, therefore, competes with Bythotrephes longimanus successfully. In addition, the differences between the two species may account for the spatial and temporal niche segregation in oligotrophic Swiss Lakes. But spatial niche segregation is less important in mesotrophic lakes with high prey density than in oligotrophic lakes with low prey density. In small, eutrophic lakes importance of temporal niche segregation also decreases, and Bythotrephes is seldom or not present. The preference of Bythotrephes to live in deeper water to avoid fish predation during summer may be the cause of its difficulties to establish itself in small and eutrophic lakes with high prey densities, where the hypolimnion is missing or anoxic.In the spring, Bythotrephes exhibits r-strategy (smaller body size and a higher fecundity), the female is already fertile after the first molt. In the summer, a K-strategy prevails (larger body length and lower fecundity than in the spring), and female Bythotrephes are fertile only after the second molt. Shortage of prey (biomass of Bosmina and Daphniadecreased after June especially in the surface layers) and the maximum fish predation pressure in summer may change the life strategy of Bythotrephes: while fecundity decreases from generation to generation, body length increases. Enhanced prey densities (e.g. during mesotrophic conditions in L. Lucerne) lead to larger individuals in summer and autumn.  相似文献   
199.
Fortnightly experimental purse-seine hauls at fish aggregation devices (FADs) and open water control sites, over a 2-year period in oceanic waters o. the eastern coast of Majorca revealed that carangid, coryphaenid, serranid, balistid and centrolophid fishes caught there were mostly planktivores. Most of the species had a high food intake. The dominance of neustonic and holoplanktonic epipelagic prey could indicate a direct link between FADs, invertebrates (biofouling) and fish. Polyprion and Schedophilus were more generalist predators than the more specialized Naucrates and Trachurus spp. There was low variation in feeding intake and the types of prey categories important for each species. Naucrates , Coryphaena and Schedophilus characterized the autumn community under FADs, while Trachurus , Seriola and Balistes were present throughout the summer. There was little diet overlap among the species suggesting only limited competition for the food resources among Trachurus spp, Naucrates and Seriola , and among Seriola and Coryphaena.  相似文献   
200.
Williams  Adrian E.  Moss  Brian 《Hydrobiologia》2003,491(1-3):331-346
Thirty-six enclosures, surface area 4 m2, were placed in Little Mere, a shallow fertile lake in Cheshire, U.K. The effects of different fish species (common carp, common bream, tench and roach) of zooplanktivorous size, and their biomass (0, 200 and 700 kg ha–1) on water chemistry, zooplankton and phytoplankton communities were investigated. Fish biomass had a strong effect on mean zooplankton size and abundance. When fish biomass rose, larger zooplankters were replaced by more numerous smaller zooplankters. Consequently phytoplankton abundance rose in the presence of higher densities of zooplanktivorous fish, as zooplankton grazing was reduced. Fish species were also significant in determining zooplankton community size structure. In enclosures with bream there were significantly greater densities of small zooplankters than in enclosures stocked with either carp, tench and, in part, roach. When carp or roach were present, the phytoplankton had a greater abundance of Cyanophyta than when bream or tench were present. Whilst top-down effects of fish predation controlled the size partitioning of the zooplankton community, this, in turn apparently controlled the bottom-up regeneration of nutrients for the phytoplankton community. At the zooplankton–phytoplankton interface, both top-down and bottom-up processes were entwined in a reciprocal feedback mechanism with the extent and direction of that relationship altered by changes in fish species. This has consequences for the way that top-down and bottom-up processes are generalised.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号