首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10375篇
  免费   1087篇
  国内免费   2225篇
  2024年   14篇
  2023年   160篇
  2022年   199篇
  2021年   292篇
  2020年   395篇
  2019年   451篇
  2018年   454篇
  2017年   442篇
  2016年   462篇
  2015年   417篇
  2014年   462篇
  2013年   725篇
  2012年   411篇
  2011年   482篇
  2010年   382篇
  2009年   581篇
  2008年   520篇
  2007年   556篇
  2006年   545篇
  2005年   519篇
  2004年   472篇
  2003年   421篇
  2002年   401篇
  2001年   352篇
  2000年   300篇
  1999年   295篇
  1998年   245篇
  1997年   264篇
  1996年   256篇
  1995年   222篇
  1994年   196篇
  1993年   189篇
  1992年   206篇
  1991年   143篇
  1990年   164篇
  1989年   143篇
  1988年   128篇
  1987年   122篇
  1986年   97篇
  1985年   123篇
  1984年   89篇
  1983年   54篇
  1982年   112篇
  1981年   73篇
  1980年   50篇
  1979年   33篇
  1978年   22篇
  1977年   12篇
  1976年   8篇
  1975年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Hawaiian endemic tree Acacia koa is a model for heteroblasty with bipinnately compound leaves and phyllodes. Previous studies suggested three hypotheses for their functional differentiation: an advantage of leaves for early growth or shade tolerance, and an advantage of phyllodes for drought tolerance. We tested the ability of these hypotheses to explain differences between leaf types for potted plants in 104 physiological and morphological traits, including gas exchange, structure and composition, hydraulic conductance, and responses to varying light, intercellular CO2, vapour pressure deficit (VPD) and drought. Leaf types were similar in numerous traits including stomatal pore area per leaf area, leaf area‐based gas exchange rates and cuticular conductance. Each hypothesis was directly supported by key differences in function. Leaves had higher mass‐based gas exchange rates, while the water storage tissue in phyllodes contributed to greater capacitance per area; phyllodes also showed stronger stomatal closure at high VPD, and higher maximum hydraulic conductance per area, with stronger decline during desiccation and recovery with rehydration. While no single hypothesis completely explained the differences between leaf types, together the three hypotheses explained 91% of differences. These findings indicate that the heteroblasty confers multiple benefits, realized across different developmental stages and environmental contexts.  相似文献   
972.
We characterized differences in carbon isotopic content (δ13C) and sugar concentrations in phloem exudates from Eucalyptus globulus (Labill) plantations across a rainfall gradient in south‐western Australia. Phloem sap δ13C and sugar concentrations varied with season and annual rainfall. Annual bole growth was negatively related to phloem sap δ13C during summer, suggesting a water limitation, yet was positively related in winter. We conclude that when water is abundant, variations in carboxylation rates become significant to overall growth. Concentrations of sucrose in phloem sap varied across sites by up to 600 mm, and raffinose by 300 mm . These compounds play significant roles in maintaining osmotic balance and facilitating carbon movement into the phloem, and their relative abundances contribute strongly to overall δ13C of phloem sap. Taken together, the δ13C and concentrations of specific sugars in phloem sap provide significant insights to functions supporting growth at the tree, site and landscape scale.  相似文献   
973.
We analysed the abundance, spatial distribution and soil contact of wheat roots in dense, structured subsoil to determine whether incomplete extraction of subsoil water was due to root system limitations. Intact soil cores were collected to 1.6 m below wheat crops at maturity on a red Kandosol in southern Australia. Wheat roots, remnant roots, soil pores and root–soil contact were quantified at fresh breaks in the soil cores. In surface soil layers (<0.6 m) 30–40% of roots were clumped within pores and cracks in the soil, increasing to 85–100% in the subsoil (>0.6 m), where 44% of roots were in pores with at least three other roots. Most pores contained no roots, with occupancy declining from 20% in surface layers to 5% in subsoil. Wheat roots clumped into pores contacted the surrounding soil via numerous root hairs, whereas roots in cracks were appressed to the soil surface and had very few root hairs. Calculations assuming good root–soil contact indicated that root density was sufficient to extract available subsoil water, suggesting that uptake is constrained at the root–soil interface. To increase extraction of subsoil water, genetic targets could include increasing root–soil contact with denser root hairs, and increasing root proliferation to utilize existing soil pores.  相似文献   
974.
We examined the relationships between xylem resistance to cavitation and 16 structural and functional traits across eight unrelated Populus deltoides×Populus nigra genotypes grown under two contrasting water regimes. The xylem water potential inducing 50% loss of hydraulic conductance (Ψ50) varied from ?1.60 to ?2.40 MPa. Drought‐acclimated trees displayed a safer xylem, although the extent of the response was largely genotype dependant, with Ψ50 being decreased by as far as 0.60 MPa. At the tissue level, there was no clear relationship between xylem safety and either xylem water transport efficiency or xylem biomechanics; the only structural trait to be strongly associated with Ψ50 was the double vessel wall thickness, genotypes exhibiting a thicker double wall being more resistant. At the leaf level, increased cavitation resistance was associated with decreased stomatal conductance, while no relationship could be identified with traits associated with carbon uptake or bulk leaf carbon isotope discrimination, a surrogate of intrinsic water‐use efficiency. At the whole‐plant level, increased safety was associated with higher shoot growth potential under well‐irrigated regime only. We conclude that common trade‐offs between xylem resistance to cavitation and other physiological traits that are observed across species may not necessarily hold true at narrower scales.  相似文献   
975.
The FtsH2 protease, encoded by the slr0228 gene, plays a key role in the selective degradation of photodamaged D1 protein during the repair of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. To test whether additional proteases might be involved in D1 degradation during high rates of photodamage, we have studied the synthesis and degradation of the D1 protein in ΔPsbO and ΔPsbV mutants, in which the CaMn4 cluster catalyzing oxygen evolution is less stable, and in the D1 processing mutants, D1-S345P and ΔCtpA, which are unable to assemble a functional cluster. All four mutants exhibited a dramatically increased rate of D1 degradation in high light compared to the wild-type. Additional inactivation of the ftsH2 gene slowed the rate of D1 degradation dramatically and increased the level of PSII complexes. We conclude that FtsH2 plays a major role in the degradation of both precursor and mature forms of D1 following donor-side photoinhibition. However, this conclusion concerned only D1 assembled into larger complexes containing at least D2 and CP47. In the ΔpsbEFLJ deletion mutant blocked at an early stage in PSII assembly, unassembled D1 protein was efficiently degraded in the absence of FtsH2 pointing to the involvement of other protease(s). Significantly, the ΔPsbO mutant displayed unusually low levels of cellular chlorophyll at extremely low-light intensities. The possibilities that PSII repair may limit the availability of chlorophyll for the biogenesis of other chlorophyll-binding proteins and that PsbO might have a regulatory role in PSII repair are discussed.  相似文献   
976.
The aim of this study was to test whether the deuterium oxide dilution technique accurately predicts water intake in sheep and goats. Two other issues were also studied: (i) a comparison of water intake in sheep and goats and (ii) an assessment of whether observations of drinking behaviour can accurately measure the water intake. In this study, eight dry Boer goats and eight dry German Black Head Mutton ewes were kept under controlled stable conditions. Animals had access to hay and water ad libitum. Diurnal drinking behaviour was recorded by video. Individual daily water intake was measured and estimated for 2 weeks by re-weighing water buckets and from water kinetics using the deuterium oxide dilution technique, respectively. In addition, dry matter intakes were directly measured and were significantly higher in sheep than in goats. The average daily water consumption by drinking differed significantly between the two species, with higher intakes in sheep than in goats. Total body water expressed as a percentage of body mass did not differ between species. Measurement methods of total water intake (TWI) using deuterium oxide dilution and re-weighing water buckets did not differ significantly in both species (P = 0.926). Results obtained for measured and estimated TWI confirm that the isotope dilution technique gives reliable results for estimates of water intake in sheep and goats. The higher amount of water intake in sheep was also reflected by their drinking behaviour. Sheep spent approximately 0.3% per 24-h drinking, while Boer goats spent only 0.1%. However, measured and estimated TWIs were only moderately correlated to the daily time spent drinking. The lower water intake found in Boer goats confirms a superior water management capacity compared with Black Head Mutton sheep even under temperate conditions.  相似文献   
977.
In the Midwestern US, perennial rhizomatous grasses (PRGs) are considered one of the most promising vegetation types to be used as a cellulosic feedstock for renewable energy production. The potential widespread use of biomass crops for renewable energy production has sparked numerous environmental concerns, including the impacts of land‐use change on the hydrologic cycle. We predicted that total seasonal evapotranspiration (ET) would be higher for PRGs relative to maize resulting from higher leaf area and a prolonged growing season. We further predicted that, compared with maize, higher aboveground biomass associated with PRGs would offset the higher ET and increase water‐use efficiency (WUE) in the context of biomass harvests for liquid biofuel production. To test these predictions, ET was estimated during the 2007 growing season for replicated plots of Miscanthus×giganteus (miscanthus), Panicum virgatum (switchgrass), and Zea mays (maize) using a residual energy balance approach. The combination of a 25% higher mean latent heat flux (λET) and a longer growing season resulted in miscanthus having ca. 55% higher cumulative ET over the growing season compared with maize. Cumulative ET for switchgrass was also higher than maize despite similar seasonal‐mean λET. Based on total harvested aboveground biomass, WUE was ca. 50% higher for maize relative to miscanthus; however, when WUE calculated from only maize grain biomass was compared with WUE calculated from miscanthus harvested aboveground biomass, this difference disappeared. Although WUE between maize and miscanthus differed postsenescence, there were no differences in incremental WUE throughout the growing season. Despite initial predictions, aboveground biomass for switchgrass was less than maize; thus WUE was substantially lower for switchgrass than for either maize scenario. These results indicate that changes in ET due to large‐scale implementation of PRGs in the Midwestern US would likely influence local and regional hydrologic cycles differently than traditional row crops.  相似文献   
978.
Cryptosporidium and Giardia are 2 protozoan parasites responsible for waterborne diseases outbreaks worldwide. In order to assess the prevalence of these protozoans in drinking water samples in the northern part of Portugal and the risk of human infection, we have established a long term program aiming at pinpointing the sources of surface water, drinking water, and environmental contamination, working with the water-supply industry. Total 43 sources of drinking water samples were selected, and a total of 167 samples were analyzed using the Method 1623. Sensitivity assays regarding the genetic characterization by PCR and sequencing of the genes, 18S SSU rRNA, for Cryptosporidium spp. and β,-giardin for G. duodenalis were set in the laboratory. According to the defined criteria, molecular analysis was performed over 4 samples. Environmental stages of the protozoa were detected in 25.7% (43 out of 167) of the water samples, 8.4% (14 out of 167) with cysts of Giardia, 10.2% (17 out of 167) with oocysts of Cryptosporidium and 7.2% (12 out of 167) for both species. The mean concentrations were 0.1-12.7 oocysts of Cryptosporidium spp. per 10 L and 0.1-108.3 cysts of Giardia duodenalis per 10 L. Our results suggest that the efficiency in drinking water plants must be ameliorated in their efficiency in reducing the levels of contamination. We suggest the implementation of systematic monitoring programs for both protozoa. To authors'' knowledge, this is the first report evaluating the concentration of environmental stages of Cryptosporidium and Giardia in drinking water samples in the northern part of Portugal.  相似文献   
979.
This study has been conducted to estimate the occurrence of Cryptosporidium oocysts in water supplies in the Metropolitan area of Seoul, South Korea, for 10 years from 2000 to 2009. Water samples were collected quarterly at 6 intakes in the Han River and its largest stream and 6 conventional Water Treatment Plants (WTPs) serving drinking water for 10 million people of Seoul. Cryptosporidium oocysts were found in 22.5% of intake water samples and arithmetic mean was 0.65 oocysts/10 L (range 0-22 oocysts/10 L). Although the annual mean of oocyst number was as low as 0.04-1.90 oocysts/10 L, 3 peaks in 2004 and 2007 were observed and the pollution level was a little higher in winter. The lowest density was observed at Paldang intake and the pollution level increased at Kuui and Jayang intakes. At the end of the largest stream, oocysts were found in 70% of collected samples (mean 5.71 oocysts/10 L) and it seemed that its joining the Han River resulted in the increase at Kuui intake and downstream. Oocyst removal by physical process exceeded 2.0-2.3 log and then all finished water samples collected at 6 WTPs were negative for Cryptosporidium in each 100 L sample for 10 years. These results suggested that domestic wastewater from the urban region could be a source of Cryptosporidium pollution and separating sewage systems adjacent to the intakes could be meaningful for some intakes having weakness related to parasitological water quality.  相似文献   
980.
1. Possible impacts of water‐resource development on assemblages of freshwater macroinvertebrates were investigated in the upper Darling River and some of its tributaries in north‐western New South Wales (Australia), an arid and semi‐arid region of low relief where alteration of river flows has intensified through expansion of irrigated agriculture. 2. Study sites were grouped into four hydrological regimes resulting from impoundment, flow regulation, water abstraction and natural variation, namely (i) intermittent flow with relatively little hydrological alteration from water‐resource development, (ii) intermittent flow with substantial alteration, (iii) near‐perennial flow with substantial alteration but unimpounded and (iv) near‐perennial flow with substantial alteration plus impoundment by weirs that stabilise water levels. 3. Macroinvertebrates were sampled with three methods (a quantitative cylinder sampler, handnet sampling and baited traps) in three periods with differing hydrology (recessional low flow in June 2003, high flow in March 2004 and increasing flow after drought in December 2004). 4. Taxonomic richness, assemblage composition and catch per unit effort of the crayfish Cherax destructor differed significantly among the site groups, but total macroinvertebrate density and the AUSRIVAS O/E (Australian River Assessment System observed‐over‐expected) index did not. The principal spatial differences were between the intermittent and near‐perennial rivers, and apparent effects of water‐resource development and impoundment were more subtle. Temporal differences in richness, abundance and composition were substantial and appeared to be related mainly to variations in discharge and temperature. 5. Current macroinvertebrate‐based methods for assessing the ‘condition’ or ‘health’ of Australian dryland rivers are inadequate. Such assessments might be improved with (i) reference data that take adequate account of antecedent hydrological conditions, (ii) consideration of long‐term taxonomic richness as well as richness on individual sampling occasions, (iii) evaluation of invertebrate population sizes, (iv) analysis of assemblage data by trait composition and (v) adoption of the genus as the default level of taxonomic resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号