首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10389篇
  免费   1047篇
  国内免费   2304篇
  13740篇
  2024年   49篇
  2023年   166篇
  2022年   208篇
  2021年   292篇
  2020年   398篇
  2019年   451篇
  2018年   454篇
  2017年   442篇
  2016年   462篇
  2015年   417篇
  2014年   462篇
  2013年   725篇
  2012年   411篇
  2011年   482篇
  2010年   382篇
  2009年   581篇
  2008年   520篇
  2007年   556篇
  2006年   545篇
  2005年   519篇
  2004年   472篇
  2003年   421篇
  2002年   401篇
  2001年   352篇
  2000年   300篇
  1999年   295篇
  1998年   245篇
  1997年   264篇
  1996年   256篇
  1995年   222篇
  1994年   196篇
  1993年   189篇
  1992年   206篇
  1991年   143篇
  1990年   164篇
  1989年   143篇
  1988年   128篇
  1987年   122篇
  1986年   97篇
  1985年   123篇
  1984年   89篇
  1983年   54篇
  1982年   112篇
  1981年   73篇
  1980年   50篇
  1979年   33篇
  1978年   22篇
  1977年   12篇
  1976年   8篇
  1975年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
森林生态系统作为陆地生态系统的主体,其发达的林冠层通过调节降水量、改变降水强度等深刻影响着流域全过程水文通量及水分输出。以中国广泛开展的典型森林降雨再分配过程的年尺度监测数据为基础,揭示中国不同类型森林生态系统的降雨再分配及林冠层降雨截留特征,阐明森林生态系统林冠层截留特征与降雨、植被要素的关系。结果表明:我国不同森林生态系统年穿透雨量处于141.4-2450.0 mm之间,年穿透雨率为36.3%-92.3%。5种典型森林生态系统多年平均穿透雨量((445.3±252.9)-(1230.6±479.6) mm)占同期多年平均降雨量的(72.6±9.2)%-(77.4±8.9)%。不同森林生态系统年树干茎流量介于0-508.2 mm之间,占同期年降雨量的0-25.8%。5种典型森林生态系统树干茎流量多年平均值((9.8±17.3)-(87.8±81.6) mm)占同期多年平均降雨量的(1.4±1.9)%-(5.4±4.6)%。不同森林生态系统林冠层年降雨截留范围在25.7-812.9 mm之间,占年降雨量的4.2%-55.6%。5种典型森林生态系统多年平均林冠截留量((154.2±81.6)-(392.2±203.5) mm)占同期年平均降雨量的(18.7±7.4)%-(25.9±8.3)%。进一步分析表明,我国森林生态系统穿透雨量、树干茎流量和林冠层截留量随观测区年降雨量的增加而呈显著增大(P<0.05),年穿透雨率、年树干茎流率随年降雨量的增加呈显著线性上升趋势(P<0.05),而年林冠截留率与年降雨量呈显著的负相关关系(P<0.01),降雨量、叶面积指数是深刻影响森林生态系统林冠层降雨截留率等特征的重要因素。整体上,不同类型森林生态系统林冠截留降雨能力存在明显差异,林冠层截留率突出表现为:落叶林大于常绿林、针叶林大于阔叶林。  相似文献   
962.
张雯  刘倩倩  王慧  陈彬 《生态学报》2023,43(12):4943-4953
高强度农业开发引起的农业水土资源生态问题日益增多,探究粮食及蔬菜(粮蔬)生产中水土资源空间配置及短缺压力对农业资源的可持续利用具有重要意义。从水足迹视角出发,分析了山东省3种主要粮食作物(冬小麦、玉米及大豆)和两种不同种植模式蔬菜(设施蔬菜和露地蔬菜)的生产水足迹空间特征;同时将资源数量及资源质量的概念纳入研究框架,分析了农业水土资源数量及质量匹配格局差异,并进一步探究了农业水土资源短缺压力及其影响因素。研究结果表明:(1)2019年,山东省粮食和蔬菜的生产总水足迹为811亿m3,其中粮食生产总水足迹占比78.50%,蔬菜生产总水足迹占比21.50%;粮蔬生产水足迹受地势影响明显,鲁西北及鲁西南平原地区的粮蔬生产水足迹占比较大。(2)考虑资源数量的水土资源匹配系数均值为0.622×104 m3/hm2,考虑资源质量的匹配系数均值为0.416×104 m3/hm2;水土资源数量及质量匹配系数在空间上呈现出一致性,表明山东省农业生产水土资源空间配置水平高的地区同时面临着较大的农业面源污染压力。(3)整体上,土地资源短缺压力略高于水资源短缺压力;基于生产视角的水土资源短缺压力受生产环境因素制约显著,受经济发展因素的影响具有差异性,社会因素对水土资源短缺压力无显著影响。研究可为农业资源可持续管理提供数据基础,为全面理解粮蔬生产所产生的水土资源短缺提供案例参考。  相似文献   
963.
马晓蕾  王婕  刘若男 《生态学报》2023,43(9):3677-3688
科学测度水资源和水环境可持续能力,对区域水资源管理具有重要意义。从“水量”和“水质”两个角度,对我国31个省域地区的“水量”及“水质“生态足迹、生态承载力和生态压力指数进行研究。结果表明:(1)2000—2020年,我国水资源生态压力指数均小于1,最高值为2011年的0.86,总体水量供给充足,可持续能力强;万元GDP水量生态足迹呈波动下降趋势,用水效率大幅度提升。(2)2000—2020年,我国水质可持续能力均较强,处于安全和较安全状态,水质生态盈余量约2亿hm2;人均水质承载力约为人均水质生态足迹的2倍,且万元GDP产生的污水量呈下降趋势。(3)人均水量生态足迹和万元GDP水量生态足迹的空间重心均位于甘肃省。水量及水质生态足迹高值区,均主要位于“胡焕庸线”西北部,而承载力高值区,主要位于青藏高原和我国南方地区。(4)我国水量可持续能力处于安全、临界状态和不安全的地区数,分别占55%、6%和39%;水质可持续能力处于安全、临界状态和不安全的地区数,分别占61%、3%和35%;水量及水质可持续能力较强和较弱的地区数之比,约为6∶4。研究揭示了我国水量及水质风险等级...  相似文献   
964.
Abstract. The diurnal cycling of leaf water potential (Ψleaf) in field-grown sunflower ( Helianthus annuus ) was used to investigate the cause of water deficitinduced limitation of net photosynthesis. Daily midafternoon decreases in Ψleaf of up to 1.5 MPa and in net photosynthesis of up to 50% were typical for irrigated sunflower during seed filling. These midafternoon values were lowered an additional 0.6 to 0.8 MPa by prolonged drought treatment. There was a nearly linear relationship between the decline in net photosynthesis and reductions in leaf conductance over the course of the day. Thus, it was unexpected to find that the low, midafternoon rates of photosynthesis were associated with the highest intercellular CO2 concentrations. These and other observations suggest that the daily decline in photosynthesis represents a 'down regulation' of the biochemical demand for CO2 that is coordinated with the diurnally developing need to conserve water, thus establishing a balanced limitation of photosynthesis involving both stomatal and non-stomatal factors. There were no indications that either short term (i.e. diurnal declines in Ψleaf) or long term (i.e. drought treatment) water deficits caused any damage or malfunctioning of photosynthesis. Rather, both the daily declines in photosynthesis and the nearly 25% decrease in leaf area induced by prolonged drought appeared to be well-controlled adaptive responses by field-grown sunflower plants to limited water availability.  相似文献   
965.
Hatschekia plectropomi , an ectoparasitic copepod found on the gills, infected Plectropomus leopardus from Heron Island Reef with 100% prevalence ( n  = 32) and a mean ±  s . e . infection intensity of 131·9 ± 22·1. The distribution of 4222 adult female parasites across 32 individual host fish was investigated at several organizational levels ranging from the level of holobranch pairs to that of individual filaments. Parasites demonstrated a site preference for the two central holobranchs (2 and 3). Along the lengths of hemibranchs, filaments near the dorsal and ventral ends and those in the proximity of the bend region were rarely occupied. The probability of coming into contact with a suitable attachment site and the ability to withstand ventilation forces at that site were proposed as the major factors affecting distribution. Two H. plectropomi morphotypes were identified based on the direction of body curvature. Regardless of morphotype, 99·9% of individuals were attached such that the convex side of the body was oriented towards the oncoming ventilating water currents. Further, 93·3% of individuals attached to the posterior faces of filaments, leading to a predictable pattern of attachment for this species. It is suggested that the direction of body curvature develops in response to the direction of the ventilating water currents.  相似文献   
966.
Hawaiian endemic tree Acacia koa is a model for heteroblasty with bipinnately compound leaves and phyllodes. Previous studies suggested three hypotheses for their functional differentiation: an advantage of leaves for early growth or shade tolerance, and an advantage of phyllodes for drought tolerance. We tested the ability of these hypotheses to explain differences between leaf types for potted plants in 104 physiological and morphological traits, including gas exchange, structure and composition, hydraulic conductance, and responses to varying light, intercellular CO2, vapour pressure deficit (VPD) and drought. Leaf types were similar in numerous traits including stomatal pore area per leaf area, leaf area‐based gas exchange rates and cuticular conductance. Each hypothesis was directly supported by key differences in function. Leaves had higher mass‐based gas exchange rates, while the water storage tissue in phyllodes contributed to greater capacitance per area; phyllodes also showed stronger stomatal closure at high VPD, and higher maximum hydraulic conductance per area, with stronger decline during desiccation and recovery with rehydration. While no single hypothesis completely explained the differences between leaf types, together the three hypotheses explained 91% of differences. These findings indicate that the heteroblasty confers multiple benefits, realized across different developmental stages and environmental contexts.  相似文献   
967.
The purpose of this study was to investigate the changes induced by a lypolytic enzyme on the surface properties of polyethylene terephthalate (PET). Changes in surface hydrophilicity were monitored by means of water contact angle (WCA) measurements. Fourier Transform Infrared spectroscopy (FTIR) in the Attenuated Total Reflectance mode (ATR) was used to investigate the structural and conformational changes of the ethylene glycol and benzene moieties of PET. Amorphous and crystalline PET membranes were used as substrate. The lipolytic enzyme displayed higher hydrolytic activity towards the amorphous PET substrate, as demonstrated by the decrease of the WCA values. Minor changes were observed on the crystalline PET membrane. The effect of enzyme adhesion was addressed by applying a protease after‐treatment which was able to remove the residual enzyme protein adhering to the surface of PET, as demonstrated by the behavior of WCA values. Significant spectral changes were observed by FTIR–ATR analysis in the spectral regions characteristic of the crystalline and amorphous PET domains. The intensity of the crystalline marker bands increased while that of the amorphous ones decreased. Accordingly, the crystallinity indexes calculated as band intensity ratios (1,341/1,410 cm?1 and 1,120/1,100 cm?1) increased. Finally, the free carboxyl groups formed at the surface of PET by enzyme hydrolysis were esterified with a fluorescent alkyl bromide, 2‐(bromomethyl)naphthalene (BrNP). WCA measurements confirmed that the reaction proceeded effectively. The fluorescence results indicate that the enzymatically treated PET films are more reactive towards BrNP. FTIR analysis showed that the surface of BrNP‐modified PET acquired a more crystalline character. Biotechnol. Bioeng. 2009;103: 845–856. © 2009 Wiley Periodicals, Inc.  相似文献   
968.
The fossil record provides direct empirical data for understanding macroevolutionary patterns and processes. Inherent biases in the fossil record are well known to confound analyses of this data. Sampling bias proxies have been used as covariates in regression models to test for such biases. Proxies, such as formation count, are associated with paleobiodiversity, but are insufficient for explaining species dispersal owing to a lack of geographic context. Here, we develop a sampling bias proxy that incorporates geographic information and test it with a case study on early tetrapodomorph biogeography. We use recently-developed Bayesian phylogeographic models and a new supertree of early tetrapodomorphs to estimate dispersal rates and ancestral habitat locations. We find strong evidence that geographic sampling bias explains supposed radiations in dispersal rate (potential adaptive radiations). Our study highlights the necessity of accounting for geographic sampling bias in macroevolutionary and phylogenetic analyses and provides an approach to test for its effect.  相似文献   
969.
A novel hybrid of small core@shell structured CoSx@Cu2MoS4 uniformly hybridizing with a molybdenum dichalcogenide/N,S‐codoped graphene hetero‐network (CoSx@Cu2MoS4‐MoS2/NSG) is prepared by a facile route. It shows excellent performance toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) in alkaline medium. The hybrid exhibits rapid kinetics for ORR with high electron transfer number of ≈3.97 and exciting durability superior to commercial Pt/C. It also demonstrates great potential with remarkable stability for HER and OER, requiring low overpotential of 118.1 and 351.4 mV, respectively, to reach a current density of 10 mA cm?2. An electrolyzer based on CoSx@Cu2MoS4‐MoS2/NSG produces low cell voltage of 1.60 V and long‐term stability, surpassing a device of Pt/C + RuO2/C. In addition, a Zn‐air battery using cathodic CoSx@Cu2MoS4‐MoS2/NSG catalyst delivers a high cell voltage of ≈1.44 V and a power density of 40 mW cm?2 at 58 mA cm?2, better than the state‐of‐the‐art Pt/C catalyst. These achievements are due to the rational combination of highly active core@shell CoSx@Cu2MoS4 with large‐area and high‐porosity MoS2/NSG to produce unique physicochemical properties with multi‐integrated active centers and synergistic effects. The outperformances of such catalyst suggest an advanced candidate for multielectrocatalysis applications in metal‐air batteries and hydrogen production.  相似文献   
970.
Abstract Soil waterlogging decreased leaf conductance (interpreted as stomatal closure) of vegetative pea plants (Pisuin sativum L. cv. ‘Sprite’) approximately 24 h after the start of flooding, i.e. from the beginning of the second 16 h-long photo-period. Both adaxial and abaxial surfaces of leaves of various ages and the stipules were affected. Stomatal closure was sustained for at least 3 d with no decrease in foliar hydration measured as water content per unit area, leaf water potential or leaf water saturation deficit. Instead, leaves became increasingly hydrated in association with slower transpiration. These changes in the waterlogged plants over 3 d were accompanied by up to 10-fold increases in the concentration of endogenous abscisic acid (ABA). Waterlogging also increased foliar hydration and ABA concentrations in the dark. Leaves detached from non-waterlogged plants and maintained in vials of water for up to 3 d behaved in a similar way to leaves on flooded plants, i.e. stomata closed in the absence of a water deficit but in association with increased ABA content. Applying ABA through the transpiration stream to freshly detached leaflets partially closed stomata within 15 min. The extractable concentrations of ABA associated with this closure were similar to those found in flooded plants. When an ABA-deficient ‘wilty’ mutant of pea was waterlogged, the extent of stomatal closure was less pronounced than that in ordinary non-mutant plants, and the associated increase in foliar ABA was correspondingly smaller. Similarly, waterlogging closed stomata of tomato plants within 24 h, but no such closure was seen in ‘flacca’, a corresponding ABA-deficient mutant. The results provide an example of stomatal closure brought about by stress in the root environment in the absence of water deficiency. The correlative factor operating between the roots and shoots appeared to be an inhibition of ABA transport out of the shoots of flooded plants, causing the hormone to accumulate in the leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号