首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10389篇
  免费   1047篇
  国内免费   2304篇
  13740篇
  2024年   49篇
  2023年   166篇
  2022年   208篇
  2021年   292篇
  2020年   398篇
  2019年   451篇
  2018年   454篇
  2017年   442篇
  2016年   462篇
  2015年   417篇
  2014年   462篇
  2013年   725篇
  2012年   411篇
  2011年   482篇
  2010年   382篇
  2009年   581篇
  2008年   520篇
  2007年   556篇
  2006年   545篇
  2005年   519篇
  2004年   472篇
  2003年   421篇
  2002年   401篇
  2001年   352篇
  2000年   300篇
  1999年   295篇
  1998年   245篇
  1997年   264篇
  1996年   256篇
  1995年   222篇
  1994年   196篇
  1993年   189篇
  1992年   206篇
  1991年   143篇
  1990年   164篇
  1989年   143篇
  1988年   128篇
  1987年   122篇
  1986年   97篇
  1985年   123篇
  1984年   89篇
  1983年   54篇
  1982年   112篇
  1981年   73篇
  1980年   50篇
  1979年   33篇
  1978年   22篇
  1977年   12篇
  1976年   8篇
  1975年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub, is widely found in semi-arid areas in northwestern China and can survive severe desiccation of its vegetative organs. In order to study the protective mechanism of desiccation tolerance in R. soongorica, diurnal patterns of net photosynthetic rate (Pn), water use efficiency (WUE) and chlorophyll fluorescence parameters of Photosystem II (PSII), and sugar content in the source leaf and stem were investigated in 6-year-old plants during progressive soil drought imposed by the cessation of watering. The results showed that R. soongorica was char-acterized by very low leaf water potential, high WUE, photosynthesis and high accumulation of sucrose in the stem and leaf abscission under desiccation. The maximum Pn increased at first and then de-clined during drought, but intrinsic WUE increased remarkably in the morning with increasing drought stress. The maximal photochemical efficiency of PSII (Fv/Fm) and the quantum efficiency of noncyclic electric transport of PSII(ΦPSII) decreased significantly under water stress and exhibited an obvious phenomenon of photoinhibition at noon. Drought stressed plants maintained a higher capacity of dis-sipation of the excitation energy (measured as NPQ) with the increasing intensity of stress. Conditions of progressive drought promoted sucrose and starch accumulation in the stems but not in the leaves. However, when leaf water potential was less than –21.3 MPa, the plant leaves died and then abscised. But the stem photosynthesis remained and, afterward the plants entered the dormant state. Upon re-watering, the shoots reactivated and the plants developed new leaves. Therefore, R. soongorica has the ability to reduce water loss through leaf abscission and maintain the vigor of the stem cells to survive desiccation.  相似文献   
172.
Few biogeographic studies of dinoflagellate cysts include the near‐shore estuarine environment. We determine the effect of estuary type, biogeography, and water quality on the spatial distribution of organic‐walled dinoflagellate cysts from the Northeast USA (Maine to Delaware) and Canada (Prince Edward Island). A total of 69 surface sediment samples were collected from 27 estuaries, from sites with surface salinities >20. Dinoflagellate cysts were examined microscopically and compared to environmental parameters using multivariate ordination techniques. The spatial distribution of cyst taxa reflects biogeographic provinces established by other marine organisms, with Cape Cod separating the northern Acadian Province from the southern Virginian Province. Species such as Lingulodinium machaerophorum and Polysphaeridinium zoharyi were found almost exclusively in the Virginian Province, while others such as Dubridinium spp. and Islandinium? cezare were more abundant in the Acadian Province. Tidal range, sea surface temperature (SST), and sea surface salinity (SSS) are statistically significant parameters influencing cyst assemblages. Samples from the same type of estuary cluster together in canonical correspondence analysis when the estuaries are within the same biogeographic province. The large geographic extent of this study, encompassing four main estuary types (riverine, lagoon, coastal embayment, and fjord), allowed us to determine that the type of estuary has an important influence on cyst assemblages. Due to greater seasonal variations in SSTs and SSSs in estuaries compared to the open ocean, cyst assemblages show distinct latitudinal trends. The estuarine context is important for understanding present‐day species distribution, the factors controlling them, and to better predict how they may change in the future.  相似文献   
173.
An effort has been made for the first time in Asia's largest brackish water lagoon, Chilika, to investigate the spatio-temporal variability in primary productivity (PP), bacterial productivity (BP), bacterial abundance (BA), bacterial respiration (BR) and bacterial growth efficiency (BGE) in relation to partial pressure of CO2 (pCO2) and CO2 air–water flux and the resultant trophic switchover. Annually, PP ranged between 24 and 376 µg C L?1 d?1 with significantly low values throughout the monsoon (MN), caused by light limitation due to inputs of riverine suspended matter. On the contrary, BP and BR ranged from 11.5 to 186.3 µg C L?1 d?1 and from 14.1 to 389.4 µg C L?1 d?1, respectively, with exceptionally higher values during MN. A wide spatial and temporal variation in the lagoon trophic status was apparent from BP/PP (0.05–6.4) and PP/BR (0.10–18.2) ratios. The seasonal shift in net pelagic production from autotrophy to heterotrophy due to terrestrial organic matter inputs via rivers, enhanced the bacterial metabolism during the MN, as evident from the high pCO2 (10,134 µatm) and CO2 air–water flux (714 mm m?2 d?1). Large variability in BGE and BP/PP ratios especially during MN led to high bacteria-mediated carbon fluxes which was evident from significantly high bacterial carbon demand (BCD >100% of PP) during this season. This suggested that the net amount of organic carbon (either dissolved or particulate form) synthesized by primary producers in the lagoon was not sufficient to satisfy the bacterial carbon requirements. Lagoon sustained low to moderate autotrophic–heterotrophic coupling with annual mean BCD of 231% relative to the primary production, which depicted that bacterioplankton are the mainstay of the lagoon biogeochemical cycles and principal players that bring changes in trophic status. Study disclosed that the high CO2 supersaturation and oxygen undersaturation during MN was attributed to the increased heterotrophic respiration (in excess of PP) fuelled by allochthonous organic matter. On a spatial scale, lagoon sectors such as south sector, central sector and outer channel recorded “net autotrophic,” while the northern sector showed “net heterotrophic” throughout the study period.  相似文献   
174.
Agave tequilana stem explants were used to produce adventitious shoots under a set of different water potentials induced by different concentrations of gelrite in the medium. At high water potentials all shoots were vitrified; as the medium water potential became more negative the degree of vitrification decreased but the number of shoots per explant also diminished. The enzymes NADH and NAD-GDH (EC. 1.4.1.2) were measured along the water potential gradient. GDH activity was high in the non-vitrified tissues and decreased significantly in the vitrified ones.Abbreviations GDH glutamate dehydrogenase - MS Murashige and Skoog medium - MSO methionine sulfoximine - PVP polyvinylpolypyrrolidone - GS glutamine synthetase - GOGAT glutamine: oxoglutarate amino transferase  相似文献   
175.
Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama. Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood. The daily stem storage capacity was calculated by comparing the diurnal patterns of basal and crown sap flow. The amount of water withdrawn from storage and subsequently replaced daily ranged from 4 kg d–1 in a 0·20-m-diameter individual of Cecropia longipes to 54 kg d–1 in a 1·02-m-diameter individual of Anacardium excelsum, representing 9–15% of the total daily water loss, respectively. Ficus insipida, Luehea seemannii and Spondias mombin had intermediate diurnal water storage capacities. Trees with greater storage capacity maintained maximum rates of transpiration for a substantially longer fraction of the day than trees with smaller water storage capacity. All five trees conformed to a common linear relationship between diurnal storage capacity and basal sapwood area, suggesting that this relationship was species-independent and size-specific for trees at the study site. According to this relationship there was an increment of 10 kg of diurnal water storage capacity for every 0·1 m2 increase in basal sapwood area. The diurnal withdrawal of water from, and refill of, internal stores was a dynamic process, tightly coupled to fluctuations in environmental conditions. The variations in basal and crown sap flow were more synchronized after 1100 h when internal reserves were mostly depleted. Stem water storage may partially compensate for increases in axial hydraulic resistance with tree size and thus play an important role in regulating the water status of leaves exposed to the large diurnal variations in evaporative demand that occur in the upper canopy of seasonal lowland tropical forests.  相似文献   
176.
We analysed the abundance, spatial distribution and soil contact of wheat roots in dense, structured subsoil to determine whether incomplete extraction of subsoil water was due to root system limitations. Intact soil cores were collected to 1.6 m below wheat crops at maturity on a red Kandosol in southern Australia. Wheat roots, remnant roots, soil pores and root–soil contact were quantified at fresh breaks in the soil cores. In surface soil layers (<0.6 m) 30–40% of roots were clumped within pores and cracks in the soil, increasing to 85–100% in the subsoil (>0.6 m), where 44% of roots were in pores with at least three other roots. Most pores contained no roots, with occupancy declining from 20% in surface layers to 5% in subsoil. Wheat roots clumped into pores contacted the surrounding soil via numerous root hairs, whereas roots in cracks were appressed to the soil surface and had very few root hairs. Calculations assuming good root–soil contact indicated that root density was sufficient to extract available subsoil water, suggesting that uptake is constrained at the root–soil interface. To increase extraction of subsoil water, genetic targets could include increasing root–soil contact with denser root hairs, and increasing root proliferation to utilize existing soil pores.  相似文献   
177.
178.
分析了北京鹫峰山区侧柏、荆条枝条水及其潜在水分来源的氢氧同位素特征,运用IsoSource模型解析侧柏、荆条系统水分利用来源的季节变化及其对降雨事件的响应.结果表明:旱季初期(4月)研究区0~20 cm土层富集土壤水18O值,20 cm以下该值则随着土层深度增加逐渐减小,侧柏主要利用前2~3 d降雨补充的0~30 cm层土壤水;旱季末期(6月)侧柏和荆条分别利用当天雨水补充的0~10和10~30 cm层土壤水;雨季(7月)侧柏利用前期降水补给的0~40 cm层土壤水(59.3%)和近期降水(12.5%),荆条则利用近期降雨供给的0~30 cm层土壤水;侧柏的土壤水分来源逐月加深,至生长季末(11月)其主要利用60~80 cm层土壤水(前2~3 d降雨补给),而荆条枝条水δ18O值远离各水分来源δ18O值.两物种对水分的竞争压力小,适应本区域气候特征,尤其在应对特大暴雨等极端天气时,植物系统垂直分布的水分来源能够有效分流洪峰,减小暴雨瞬时破坏力.  相似文献   
179.
The water relations and hydraulic architecture of growing grass tillers (Festuca arundinacea Schreb.) are reported. Evaporative flux density, E (mmol s?1 m?2), of individual leaf blades was measured gravimetrically by covering or excision of entire leaf blades. Values of E were similar for mature and elongating leaf blades, averaging 2·4 mmol s?1 m?2. Measured axial hydraulic conductivity, Kh (mmol s?1 mm MPa?1), of excised leaf segments was three times lower than theoretical hydraulic conductivity (Kt) calculated using the Poiseuille equation and measurements of vessel number and diameter. Kt was corrected (Kt*) to account for the discrepancy between Kh and Kt and for immature xylem in the basal expanding region of elongating leaves. From base to tip of mature leaves the pattern of Kt* was bell‐shaped with a maximum near the sheath–blade joint (≈ 19 mmol s?1 mm MPa?1). In elongating leaves, immature xylem in the basal growing region led to a much lower Kt*. As the first metaxylem matured, Kt* increased by 10‐fold. The hydraulic conductances of the whole root system, (mmol s?1 MPa?1) and leaf blades, (mmol s?1 MPa?1) were measured by a vacuum induced water flow technique. and were linearly related to the leaf area downstream. Approximately 65% of the resistance to water flow within the plant resided in the leaf blade. An electric‐analogue computer model was used to calculate the leaf blade area‐specific radial hydraulic conductivity, (mmol s?1 m?2 MPa?1), using , Kt* and water flux values. values decreased with leaf age, from 21·2 mmol s?1 m?2 MPa?1 in rapidly elongating leaf to 7·2 mmol s?1 m?2 MPa?1 in mature leaf. Comparison of and values showed that ≈ 90% of the resistance to water flow within the blades resided in the liquid extra‐vascular path. The same algorithm was then used to compute the xylem and extravascular water potential drop along the liquid water path in the plant under steady state conditions. Predicted and measured water potentials matched well. The hydraulic design of the mature leaf resulted in low and quite constant xylem water potential gradient (≈ 0·3 MPa m?1) throughout the plant. Much of the water potential drop within mature leaves occurred within a tenth of millimetre in the blade, between the xylem vessels and the site of water evaporation within the mesophyll. In elongating leaves, the low Kt* in the basal growth zone dramatically increased the local xylem water potential gradient (≈ 2·0 MPa m?1) there. In the leaf elongation zone the growth‐induced water potential difference was ≈ 0·2 MPa.  相似文献   
180.
宫兆宁  陈雨竹  赵文慧 《生态学报》2017,37(16):5294-5304
水库消落带作为重要的生态交错带,是深入分析生态要素内在作用机制的特殊区域。以华北内陆大型水库——官厅水库为研究对象,选择1979—2013年Landsat MSS/TM/ETM+/OLI影像作为数据源,分析35年来官厅水库消落带的消涨特征、时空分布差异及其变化趋势,在此基础上进行消落带淹水时长和淹水频次的分区研究,揭示消落带生态结构的形成过程。研究结论如下:(1)近35年来,官厅水库水位落差较大,达8.19m,水位变化分为3个特征时期:1979—1996年,涨落周期约为4—5a的间歇涨落期;1996—2007年,水位持续下降达7.12m的持续萎缩期;2007—2013年,涨落周期为2 a,且年际变化差稳定在0.75m的频繁涨落期。(2)35年来,官厅水库水位消涨形成118.31km~2的消落带,对应3个特征时期形成消落带的面积依次为80.20km~2,76.81 km~2和19.89km~2。间歇涨落期形成的消落带主要分布在永定河河口及平坦的康西草原一带;持续萎缩期的消落带有明显向西北河岸带扩张的趋势;频繁涨落期的消落带以库心区域水位回升为主,面积仅19.89 km~2。(3)1979—2013年,基于淹水累计时长的分区中,消落带整体上表现为淹水累计时长随边岸向库区中心逐渐递增的趋势,25.85%的消落带淹水时长不足5a,71.77%的消落带淹水时长大于16 a,但随着淹水时长减少,消落带区域植物旱化现象突出,同时植被群落盖度和多样性降低。淹水频次分区中,相同淹水频次的区域在空间上离散分布,一次淹水区面积为32.79km~2,在消落带中所占比例优势明显,但累计淹水时长差异同样显著,分别为2 a和26 a,淹水最为频繁的消落带共经历了9次淹水过程;分区中的土壤有机质含量差异表明,淹水频次越高越有利于土壤有机质的积淀。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号