首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   29篇
  国内免费   9篇
  380篇
  2024年   2篇
  2023年   3篇
  2022年   9篇
  2021年   14篇
  2020年   13篇
  2019年   10篇
  2018年   8篇
  2017年   3篇
  2016年   3篇
  2015年   14篇
  2014年   15篇
  2013年   9篇
  2012年   10篇
  2011年   15篇
  2010年   24篇
  2009年   17篇
  2008年   17篇
  2007年   15篇
  2006年   11篇
  2005年   21篇
  2004年   11篇
  2003年   15篇
  2002年   15篇
  2001年   8篇
  2000年   4篇
  1999年   9篇
  1998年   8篇
  1997年   7篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   7篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1973年   3篇
排序方式: 共有380条查询结果,搜索用时 15 毫秒
121.
Although the regulation of Arabidopsis floral meristem patterning and determinacy has been studied in detail, very little is known about the genetic mechanisms directing development of the pedicel, the short stem linking the flower to the inflorescence axis. Here, we provide evidence that the pedicel consists of a proximal portion derived from the young flower primordium, and a bulged distal region that emerges from tissue at the bases of sepals in the floral bud. Distal pedicel growth is controlled by the KNOTTED1-like homeobox gene BREVIPEDICELLUS (BP), as 35S::BP plants show excessive proliferation of pedicel tissue, while loss of BP conditions a radial constriction around the distal pedicel circumference. Mutant radial constrictions project proximally along abaxial and lateral sides of pedicels, leading to occasional downward bending at the distal pedicel. This effect is severely enhanced in a loss-of-function erecta (er) background, resulting in radially constricted tissue along the entire abaxial side of pedicels and downward-oriented flowers and fruit. Analysis of pedicel vascular patterns revealed biasing of vasculature towards the abaxial side, consistent with a role for BP and ER in regulating a vascular-borne growth inhibitory signal. BP expression in a reporter line marked boundaries between the inflorescence stem and lateral organs and the receptacle and floral organs. This boundary expression appears to be important to prevent homeotic displacement of node and lateral organ fates into underlying stem tissue. To investigate interactions between pedicel and flower development, we crossed bp er into various floral mutant backgrounds. Formation of laterally-oriented bends in bp lfy er pedicels paralleled phyllotaxy changes, consistent with a model where the architecture of mutant stems is controlled by both organ positioning and vasculature patterns. Collectively, our results indicate that the BP gene acts in Arabidopsis stems to confer a growth-competent state that counteracts lateral-organ associated asymmetries and effectively radializes internode and pedicel growth and differentiation patterns.  相似文献   
122.
BACKGROUND AND AIMS: High night temperatures are more harmful to grain weight in rice than high day temperatures. Grain growth rate and growth duration were investigated to determine which was the cause of the decrease in final grain weight under high night temperatures. Endosperm cell number and cell sizes were also examined to determine which might cause the decrease in final grain weight. METHODS: Rice plants were grown outdoors in plastic pots and moved at heading time to three temperature-controlled glasshouses under high night temperature (HNT; 22/34 degrees C), high day temperature (HDT; 34/22 degrees C) and control conditions (CONT; 22/22 degrees C). Grains were sampled periodically, and the time-course of grain growth was divided into rate and duration by logistic regression analysis. Endosperm cell numbers and cell sizes were analysed by digitalized hand-tracing images of endosperm cross-sections. KEY RESULTS: The duration of grain growth was reduced by high temperature both day and night. However, the rate of grain growth was lower in HNT than in HDT. The number of cells in endosperm cross-sections in HNT was similar to that in HDT, and higher than that in CONT. The average cell area was smaller in HNT than in either CONT or HDT. The differences in average cell areas between HNT and HDT were greater at distances 60-80 % from the central point of endosperm towards the endosperm surface. CONCLUSIONS: The results show that HNT compared with HDT reduced the final grain weight by a reduction in grain growth rate in the early or middle stages of grain filling, and also reduced cell size midway between the central point and the surface of endosperm.  相似文献   
123.
To test whether it is practical to use phage display coupled with proteolysis for protein design, we used this approach to convert a partially unfolded four-helix bundle protein, apocytochrome b(562), to a stably folded four-helix bundle protein. Four residues expected to form a hydrophobic core were mutated. One residue was changed to Trp to provide a fluorescence probe for studying the protein's physical properties and to partially fill the void left by the heme. The other three positions were randomly mutated. In addition, another residue in the region to be redesigned was substituted with Arg to provide a specific cutting site for protease Arg-c. This library of mutants was displayed on the surface of phage and challenged with protease Arg-c to select stably folded proteins. The consensus sequence that emerged from the selection included hydrophobic residues at only one of the three positions and non-hydrophobic residues at the other two. Nevertheless, the selected proteins were thermodynamically very stable. The structure of a selected protein was characterized using multi-dimensional NMR. All four helices were formed in the structure. Further, site-directed mutagenesis was used to change one of the two non-hydrophobic residues to a hydrophobic residue, which increased the stability of the protein, indicating that the selection result was not based solely on the protein's global stability and that local structural characteristics may also govern the selection. This conclusion is supported by the crystal structure of another mutant that has two hydrophobic residues substituted for the two non-hydrophobic residues. These results suggest that the hydrophobic interactions in the core are not sufficient to dictate the selection and that the location of the cutting site of the protease also influences the selection of structures.  相似文献   
124.
Summary The dedifferentiated phenotype of pigmented epithelial cells in vitro is bipotential and is effected by environmental alterations mediated by the cell surface and associated cytoskeleton. We have begun an investigation into the role that contractile microfilaments play in maintaining cell contact and cell shape in retinal pigmented epithelial cells in vitro. In this paper, we report a structural analysis of the intersection of the circumferential microfilament bundle with the cell membrane of cultured pigmented epithelial cells from chick retina. Techniques of electron microscopy, including freezefracturing and deep-etching, reveal that microfilaments of this bundle associate with a junctional complex in the apical cell compartment and with membrane domains which are not components of the junction. Microfilaments link with the cell membrane either at their termini or along the membrane-apposed surface of the circumferential bundle. Furthermore, we report the immunocytochemical localization of filamin (a high molecular weight actin-binding protein, which forms fiber bundles and sheet-like structures when bound with Factin in solution) in the circumferential/microf相似文献   
125.
AimTo evaluate whether left bundle branch block with residual conduction (rLBBB) is associated with worse outcomes after cardiac resynchronisation therapy (CRT).MethodsAll consecutive CRT implants at our institution between 2006 and 2013 were identified from our local device registry. Pre- and post-implant patient specific data were extracted from clinical records.ResultsA total of 690 CRT implants were identified during the study period. Prior to CRT, 52.2% of patients had true left bundle branch block (LBBB), 19.1% a pacing-induced LBBB (pLBBB), 11.2% a rLBBB, 0.8% a right bundle branch block (RBBB), and 16.5% had a nonspecific intraventricular conduction delay (IVCD) electrocardiogram pattern. Mean age at implant was 67.5 years (standard deviation [SD] = 10.6), mean left ventricular ejection fraction (LV EF) was 25.7% (SD = 7.9%), and mean QRS duration was 158.4 ms (SD = 32 ms). After CRT, QRS duration was significantly reduced in the LBBB (p < 0.001), pLBBB (p < 0.001), rLBBB (p < 0.001), RBBB (p = 0.04), and IVCD groups (p = 0.03). LV EF significantly improved in the LBBB (p < 0.001), rLBBB (p = 0.002), and pLBBB (p < 0.001) groups, but the RBBB and IVCD groups showed no improvement. There was no significant difference in mortality between the LBBB and rLBBB groups. LV EF post-CRT, chronic kidney disease, hyperkalaemia, hypernatremia, and age at implant were significant predictors of mortality.ConclusionCRT in patients with rLBBB results in improved LV EF and similar mortality rates to CRT patients with complete LBBB. Predictors of mortality post-CRT include post-CRT LV EF, presence of CKD, hyperkalaemia, hypernatremia, and older age at implant.  相似文献   
126.
We describe an array of gaps in an antiparallel four-helix bundle structure, the cytoplasmic domains of bacterial chemoreceptors. For a given helix, the side chain interactions that define a helix’s position are analyzed in terms of residue interfaces, the most important of which are a-a, g-g, d-d, g-d, and a-d. It was found that the interdigitation of the side groups does not entirely fill the space along the long axis of the structure, which results in a rather regular array of gaps. A simulated piston motion of helix CD1 along the helical axis direction by 1.2Å shows that 85% of the side chain interactions still satisfy Van der Waals criteria, while the remaining clashes could be avoided by small rotations of side chains. Therefore, two states could exist in the structure, related by a piston motion. Analysis of the crystal structure of a small four-helix bundle, the P1short domain of CheA in Thermotoga Maritima, reveals that the two coexisting states related by a 1.3-1.7Å piston motion are defined by the same mechanism. This two-state model is a plausible candidate mechanism for the long distance signal transduction in bacterial chemoreceptors and is qualitatively consistent with literature chemoreceptor mutagenesis results. Such a mechanism could exist in many other structures with interdigitating α-helices.  相似文献   
127.
The concentration of ions in plant cells and tissues is an essential factor in determining physiological function. In the present study, we established that concentration gradients of mobile ions exist in both xylem exudates and tissues within a barley (Hordeum vulgare) primary leaf. For K+ and NO3?, ion concentrations generally decreased from the leaf base to the tip in both xylem exudates and tissues. Ion gradients were also found for Pi and Cl? in the xylem. The hydathode strongly absorbed Pi and re‐translocated it to the rest of the plant, whereas Cl? was extruded. The ion concentration gradients developed early during leaf growth, increased as the tissue aged and remained under both high and low transpiration conditions. Measurement of the expression profiles of Pi, K+ and NO3? transporters along the longitudinal axis of the leaf revealed that some transporters are more expressed at the hydathode, but for most transporters, there was no significant variation along the leaf. The mechanisms by which longitudinal ion gradients develop in leaves and their physiological functions are discussed.  相似文献   
128.
The accurate perception of sound frequency by vertebrates relies upon the tuning of hair cells, which are arranged along auditory organs according to frequency. This arrangement, which is termed a tonotopic gradient, results from the coordination of many cellular and extracellular features. Seeking the mechanisms that orchestrate those features and govern the tonotopic gradient, we used expression microarrays to identify genes differentially expressed between the high- and low-frequency cochlear regions of the chick (Gallus gallus). Of the three signaling systems that were represented extensively in the results, we focused on the notch pathway and particularly on DNER, a putative notch ligand, and PTPζ, a receptor phosphatase that controls DNER trafficking. Immunohistochemistry confirmed that both proteins are expressed more strongly in hair cells at the cochlear apex than in those at the base. At the apical surface of each hair cell, the proteins display polarized, mutually exclusive localization patterns. Using morpholinos to decrease the expression of DNER or PTPζ as well as a retroviral vector to overexpress DNER, we observed disturbances of hair-bundle morphology and orientation. Our results suggest a role for DNER and PTPζ in hair-cell development and possibly in the specification of tonotopy.  相似文献   
129.
130.
The hydraulic conductivity of the leaf vascular system (Kleaf) is dynamic and decreases rapidly under drought stress, possibly in response to the stress phytohormone ABA, which increases sharply in the xylem sap (ABAxyl) during periods of drought. Vascular bundle‐sheath cells (BSCs; a layer of parenchymatous cells tightly enwrapping the entire leaf vasculature) have been hypothesized to control Kleaf via the specific activity of BSC aquaporins (AQPs). We examined this hypothesis and provide evidence for drought‐induced ABAxyl diminishing BSC osmotic water permeability (Pf) via downregulated activity of their AQPs. ABA fed to the leaf via the xylem (petiole) both decreased Kleaf and led to stomatal closure, replicating the effect of drought. In contrast, smearing ABA on the leaf blade, while also closing stomata, did not decrease Kleaf within 2–3 h of application, demonstrating that Kleaf does not depend entirely on stomatal closure. GFP‐labeled BSCs showed decreased Pf in response to ‘drought’ and ABA treatment, and a reversible decrease with HgCl2 (an AQP blocker). These Pf responses, absent in mesophyll cells, suggest stress‐regulated AQP activity specific to BSCs, and imply a role for these cells in decreasing Kleaf via a reduction in Pf. Our results support the above hypothesis and highlight the BSCs as hitherto overlooked vasculature sensor compartments, extending throughout the leaf and functioning as ‘stress‐regulated valves’ converting vasculature chemical signals (possibly ABAxyl) into leaf hydraulic signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号